【題目】如圖,所有正方形的中心均在坐標原點,且各邊與x軸或y軸平行,從內(nèi)到外,它們的邊長依次為2,4,6,8 …,頂點依次為A1,A2,A3,A4,A5,…,則頂點A55的坐標是( )
A. (13,13) B. (-13,-13) C. (-14,-14) D. (14,14)
科目:初中數(shù)學 來源: 題型:
【題目】小明不小心把一塊三角形形狀的玻璃打碎成了三塊,如圖①②③,他想要到玻璃店去配一塊大小形狀完全一樣的玻璃,你認為應帶( 。
A. ① B. ② C. ③ D. ①和②
【答案】C
【解析】試題分析:根據(jù)全等三角形的判定方法帶③去可以利用“角邊角”得到全等的三角形.
故選C.
考點:全等三角形的應用.
【題型】單選題
【結束】
12
【題目】如圖,要測量池塘的寬度AB,在池塘外選取一點P,連接AP、BP并各自延長,使PC=PA,PD=PB,連接CD,測得CD長為25m,則池塘寬AB為________m,依據(jù)是________
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我市規(guī)劃中某地段地鐵線路要穿越護城河PQ,站點A和站點B在河的兩側(cè),要測算出A、B間的距離.工程人員在點P處測得A在正北方向,B位于南偏東24.5°方向,前行1200m,到達點Q出,測得A位于北偏東49°方向,B位于南偏西41°方向.根據(jù)以上數(shù)據(jù),求A、B間的距離.(參考數(shù)據(jù):cos41°≈0.75)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲乙兩名運動員進行射擊選撥賽,每人射擊10次,其中射擊中靶情況如下表:
第一次 | 第二次 | 第三次 | 第四次 | 第五次 | 第六次 | 第七次 | 第八次 | 第九次 | 第十次 | |
甲 | 7 | 10 | 8 | 10 | 9 | 9 | 10 | 8 | 10 | 9 |
乙 | 10 | 7 | 10 | 9 | 9 | 10 | 8 | 10 | 7 | 10 |
(1)選手甲的成績的中位數(shù)是__________分;選手乙的成績的眾數(shù)是__________分;
(2)計算選手甲的平均成績和方差;
(2)已知選手乙的成績的方差是1.4,則成績較穩(wěn)定的是哪位選手?(直按寫出結果)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是半圓O的直徑,點C是半圓O上一點,∠COB=60°,點D是OC的中點,連接BD,BD的延長線交半圓O于點E,連接OE,EC,BC.
(1)求證:△BDO≌△EDC.
(2)若OB=6,則四邊形OBCE的面積為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某水果專賣店銷售櫻桃,其進價為每千克元,按每千克元出售,平均每天可售出千克,后來經(jīng)過市場調(diào)查發(fā)現(xiàn),單價每千克降低元,則平均每天的銷售可增加千克,若該專賣店銷售這種櫻桃要想平均每天獲利元,請回答:
()每千克櫻桃應降價多少元?
()在平均每天獲利不變的情況下,為盡可能讓利于顧客,贏得市場,該店應按原售價的幾折出售?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,∠ACB是銳角,點D在射線BC上運動,連接AD,將線段AD繞點A逆時針旋轉(zhuǎn)90°,得到AE,連接EC.
(1)操作發(fā)現(xiàn):
若AB=AC,∠BAC=90°,當D在線段BC上時(不與點B重合),如圖①所示,請你直接寫出線段CE和BD的位置關系和數(shù)量關系是 , ;
(2)猜想論證:
在(1)的條件下,當D在線段BC的延長線上時,如圖②所示,請你判斷(1)中結論是否成立,并證明你的判斷.
(3)拓展延伸:
如圖③,若AB≠AC,∠BAC≠90°,點D在線段BC上運動,試探究:當銳角∠ACB等于度時,線段CE和BD之間的位置關系仍成立(點C、E重合除外)?此時若作DF⊥AD交線段CE于點F,且當AC=3 時,請直接寫出線段CF的長的最大值是
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩家櫻桃采摘園的品質(zhì)相同,銷售價格也相同,“五一期間”,兩家均推出了優(yōu)惠方案,甲采摘園的優(yōu)惠方案是:游客進園需購買50元的門票,采摘的草莓六折優(yōu)惠;乙采摘園的優(yōu)惠方案是:游客進園不需購買門票,采摘園的草莓超過一定數(shù)量后,超過部分打折優(yōu)惠.優(yōu)惠期間,設某游客的草莓采摘量為x(千克),在甲采摘園所需總費用為y1(元),在乙采摘園所需總費用為y2(元),圖中折線OAB表示y2與x之間的函數(shù)關系.
(1)甲、乙兩采摘園優(yōu)惠前的草莓銷售價格是每千克元;
(2)求y1、y2與x的函數(shù)表達式;
(3)在圖中畫出y1與x的函數(shù)圖象,若某人想在“五一期間”采摘櫻桃25千克,那么甲、乙哪個采摘園較為優(yōu)惠?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知AB∥CD,F(xiàn)為CD上一點,∠EFD=60°,∠AEC=2∠CEF,若6°<∠BAE<15°,∠C的度數(shù)為整數(shù),則∠C的度數(shù)為_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com