已知⊙O的直徑CD=10cm,AB是⊙O的弦,AB⊥CD,垂足為M,且AB=8cm,則AC的長為( )
A.cm
B.cm
C.cm或cm
D.cm或cm
【答案】分析:先根據(jù)題意畫出圖形,由于點(diǎn)C的位置不能確定,故應(yīng)分兩種情況進(jìn)行討論.
解答:解:連接AC,AO,
∵⊙O的直徑CD=10cm,AB⊥CD,AB=8cm,
∴AM=AB=×8=4cm,OD=OC=5cm,
當(dāng)C點(diǎn)位置如圖1所示時(shí),
∵OA=5cm,AM=4cm,CD⊥AB,
∴OM===3cm,
∴CM=OC+OM=5+3=8cm,
∴AC===4cm;
當(dāng)C點(diǎn)位置如圖2所示時(shí),同理可得OM=3cm,
∵OC=5cm,
∴MC=5-3=2cm,
在Rt△AMC中,AC===2cm.
故選C.
點(diǎn)評(píng):本題考查的是垂徑定理,根據(jù)題意作出輔助線,構(gòu)造出直角三角形是解答此題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•瀘州)已知⊙O的直徑CD=10cm,AB是⊙O的弦,AB⊥CD,垂足為M,且AB=8cm,則AC的長為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1)觀察發(fā)現(xiàn):
如(a)圖,若點(diǎn)A,B在直線l同側(cè),在直線l上找一點(diǎn)P,使AP+BP的值最。
做法如下:作點(diǎn)B關(guān)于直線l的對(duì)稱點(diǎn)B',連接AB',與直線l的交點(diǎn)就是所求的點(diǎn)P.再如(b)圖,在等邊三角形ABC中,AB=2,點(diǎn)E是AB的中點(diǎn),AD是高,在AD上找一點(diǎn)P,使BP+PE的值最。
做法如下:作點(diǎn)B關(guān)于AD的對(duì)稱點(diǎn),恰好與點(diǎn)C重合,連接CE交AD于一點(diǎn),則這點(diǎn)就是所求的點(diǎn)P,故BP+PE的最小值為
 

(2)實(shí)踐運(yùn)用:
如(c)圖,已知⊙O的直徑CD為4,∠AOD的度數(shù)為60°,點(diǎn)B是
AD
的中點(diǎn),在直徑CD上找一點(diǎn)P,使BP+AP的值最小,并求BP+AP的最小值.
(3)拓展延伸:
如(d)圖,在四邊形ABCD的對(duì)角線AC上找一點(diǎn)P,使∠APB=∠APD.保留作圖痕跡,不必寫出作法.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知⊙O的直徑CD為2,
AC
的度數(shù)為60°,點(diǎn)B是
AC
的中點(diǎn),在直徑CD上作出點(diǎn)P,使BP+AP的值最小,則BP+AP的最小值為
2
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•南崗區(qū)二模)如圖,已知⊙0的直徑CD為10,弦AB的長為8,且AB⊥CD,垂足為M;連接AD,則AD的長為
4
5
4
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1)如圖1,已知⊙O的直徑CD為4,∠AOD的度數(shù)為60°,點(diǎn)B是弧
AD
的中點(diǎn),在直徑CD上找一點(diǎn),使BP+AP的值最小,并求BP+AP的最小值.
(2)拓展延伸:如圖2,在四邊形ABCD的對(duì)角線AC上找一點(diǎn)P,使∠APB=∠APD.保留作圖痕跡,不必寫出作法.

查看答案和解析>>

同步練習(xí)冊答案