如圖1、2,圖1是一個(gè)小朋友玩“滾鐵環(huán)”的游戲,鐵環(huán)是圓形的,鐵環(huán)向前滾動(dòng)時(shí),鐵環(huán)鉤保持與鐵環(huán)相切.將這個(gè)游戲抽象為數(shù)學(xué)問(wèn)題,如圖2.已知鐵環(huán)的半徑為5個(gè)單位(每個(gè)單位為5cm),設(shè)鐵環(huán)中心為O,鐵環(huán)鉤與鐵環(huán)相切點(diǎn)為M,鐵環(huán)與地面接觸點(diǎn)為A,∠MOA=α,且sinα=
(1)求點(diǎn)M離地面AC的高度BM(單位:厘米);
(2)設(shè)人站立點(diǎn)C與點(diǎn)A的水平距離AC等于11個(gè)單位,求鐵環(huán)鉤MF的長(zhǎng)度(單位:厘
米).
【答案】分析:(1)過(guò)M作與AC平行的直線(xiàn),與OA、FC分別相交于H、N.那么求BM的長(zhǎng)就轉(zhuǎn)化為求HA的長(zhǎng),而要求出HA,必須先求出OH,在直角三角形OHM中,sinα==,且鐵環(huán)的半徑為5個(gè)單位即OM=5,可求得HM的值,從而求得HA的值;
(2)因?yàn)椤螹OH+∠OMH=∠OMH+∠FMN=90°,∠FMN=∠MOH=α,又因?yàn)閟inα==,所以可得出FN和FM之間的數(shù)量關(guān)系,即FN=FM,再根據(jù)MN=11-3=8,利用勾股定理即可求出FM=10個(gè)單位.
解答:解:過(guò)M作與AC平行的直線(xiàn),與OA、FC分別相交于H、N.
(1)在Rt△OHM中,∠OHM=90°,OM=5,
HM=OM×sinα=3,
所以O(shè)H=4,
MB=HA=5-4=1,
1×5=5cm.
所以鐵環(huán)鉤離地面的高度為5cm;

(2)∵鐵環(huán)鉤與鐵環(huán)相切,
∴∠MOH+∠OMH=∠OMH+∠FMN=90°,∠FMN=∠MOH=α,
=sinα=
∴FN=FM,
在Rt△FMN中,∠FNM=90°,MN=BC=AC-AB=11-3=8.
∵FM2=FN2+MN2,
即FM2=(FM)2+82
解得:FM=10,
10×5=50(cm).
∴鐵環(huán)鉤的長(zhǎng)度FM為50cm.
點(diǎn)評(píng):考查了解直角三角形的應(yīng)用,解此題的關(guān)鍵是把實(shí)際問(wèn)題轉(zhuǎn)化為數(shù)學(xué)問(wèn)題,只要把實(shí)際問(wèn)題抽象到解直角三角形中即可解答.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

29、閱讀探究題:數(shù)學(xué)課上,張老師向大家介紹了等腰三角形的基本知識(shí):有兩條邊相等的三角形叫等腰三角形,如圖1所示:在△ABC中,若AB=AC,則△ABC為等腰三角形且有∠B=∠C.此時(shí),張老師出示了問(wèn)題:如圖2,四邊形ABCD是正方形(正方形的四邊相等,四個(gè)角都是直角),點(diǎn)E是邊BC的中點(diǎn).∠AEF=90°,且EF交∠DCG的平分線(xiàn)CF于點(diǎn)F,求證:AE=EF.經(jīng)過(guò)思考,小明展示了一種正確的解題思路:在線(xiàn)段AB上取AB的中點(diǎn)M,連接ME,則AM=EC,在此基礎(chǔ)上,請(qǐng)聰明的同學(xué)們作進(jìn)一步的研究:
(1)求出角∠AME的度數(shù);
(2)你能在小明的思路下證明結(jié)論嗎?
(3)小穎提出:如圖3,如果把“點(diǎn)E是邊BC的中點(diǎn)”改為“點(diǎn)E是邊BC上(除B,C外)的任意一點(diǎn)”,其它條件不變,那么結(jié)論“AE=EF”仍然成立,你認(rèn)為小穎的觀點(diǎn)正確嗎?如果正確,寫(xiě)出證明過(guò)程;如果不正確,請(qǐng)說(shuō)明理由;

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

閱讀探究題:

數(shù)學(xué)課上,張老師向大家介紹了等腰三角形的基本知識(shí):有兩條邊相等的三角形叫等腰三角形,如圖1所示:在△ABC中,若AB=AC,則△ABC為等腰三角形且有∠B=∠C.此時(shí),張老師出示了問(wèn)題:如圖2,四邊形ABCD是正方形(正方形的四邊相等,四個(gè)角都是直角),點(diǎn)E是邊BC的中點(diǎn).∠AEF=90°,且EF交∠DCG的平分線(xiàn)CF于點(diǎn)F,求證:AE=EF.經(jīng)過(guò)思考,小明展示了一種正確的解題思路:在線(xiàn)段AB上取AB的中點(diǎn)M,連接ME,則AM=EC,在此基礎(chǔ)上,請(qǐng)聰明的同學(xué)們作進(jìn)一步的研究:
(1)求出角∠AME的度數(shù);
(2)你能在小明的思路下證明結(jié)論嗎?
(3)小穎提出:如圖3,如果把“點(diǎn)E是邊BC的中點(diǎn)”改為“點(diǎn)E是邊BC上(除B,C外)的任意一點(diǎn)”,其它條件不變,那么結(jié)論“AE=EF”仍然成立,你認(rèn)為小穎的觀點(diǎn)正確嗎?如果正確,寫(xiě)出證明過(guò)程;如果不正確,請(qǐng)說(shuō)明理由;

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:第2章《二次函數(shù)》中考題集(46):2.3 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

圖1至圖7的正方形霓虹燈廣告牌ABCD都是20×20的等距網(wǎng)格(每個(gè)小方格的邊長(zhǎng)均為1個(gè)單位長(zhǎng)),其對(duì)稱(chēng)中心為點(diǎn)O.
如圖1,有一個(gè)邊長(zhǎng)為6個(gè)單位長(zhǎng)的正方形EFGH的對(duì)稱(chēng)中心也是點(diǎn)O,它每秒1個(gè)單位長(zhǎng)的速度由起始位置向外擴(kuò)大(即點(diǎn)O不動(dòng),正方形EFGH經(jīng)過(guò)一秒由6×6擴(kuò)大為8×8;再經(jīng)過(guò)一秒,由8×8擴(kuò)大為10×10;…),直到充滿(mǎn)正方形ABCD,再以同樣的速度逐步縮小到起始時(shí)的大小,然后一直不斷地以同樣速度再擴(kuò)大、再縮。
另有一個(gè)邊長(zhǎng)為6個(gè)單位長(zhǎng)的正方形MNPQ從如圖1所示的位置開(kāi)始,以每秒1個(gè)單位長(zhǎng)的速度,沿正方形ABCD的內(nèi)側(cè)邊緣按A?B?C?D?A移動(dòng)(即正方形MNPQ從點(diǎn)P與點(diǎn)A重合位置開(kāi)始,先向左平移,當(dāng)點(diǎn)Q與點(diǎn)B重合時(shí),再向上平移,當(dāng)點(diǎn)M與點(diǎn)C重合時(shí),再向右平移,當(dāng)點(diǎn)N與點(diǎn)D重合時(shí),再向下平移,到達(dá)起始位置后仍繼續(xù)按上述方式移動(dòng)).
正方形EFGH和正方形MNPQ從如圖1的位置同時(shí)開(kāi)始運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為x秒,它們的重疊部分面積為y個(gè)平方單位.
(1)請(qǐng)你在圖2和圖3中分別畫(huà)出x為2秒、18秒時(shí),正方形EFGH和正方形MNPQ的位置及重疊部分(重疊部分用陰影表示),并分別寫(xiě)出重疊部分的面積;
(2)①如圖4,當(dāng)1≤x≤3.5時(shí),求y與x的函數(shù)關(guān)系式;
②如圖5,當(dāng)3.5≤x≤7時(shí),求y與x的函數(shù)關(guān)系式;
③如圖6,當(dāng)7≤x≤10.5時(shí),求y與x的函數(shù)關(guān)系式;
④如圖7,當(dāng)10.5≤x≤13時(shí),求y與x的函數(shù)關(guān)系式.
(3)對(duì)于正方形MNPQ在正方形ABCD各邊上移動(dòng)一周的過(guò)程,請(qǐng)你根據(jù)重疊部分面積y的變化情況,指出y取得最大值和最小值時(shí),相對(duì)應(yīng)的x的取值情況,并指出最大值和最小值分別是多少.(說(shuō)明:?jiǎn)栴}(3)是額外加分題,加分幅度為1~4分)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:第2章《二次函數(shù)》中考題集(44):2.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

圖1至圖7的正方形霓虹燈廣告牌ABCD都是20×20的等距網(wǎng)格(每個(gè)小方格的邊長(zhǎng)均為1個(gè)單位長(zhǎng)),其對(duì)稱(chēng)中心為點(diǎn)O.
如圖1,有一個(gè)邊長(zhǎng)為6個(gè)單位長(zhǎng)的正方形EFGH的對(duì)稱(chēng)中心也是點(diǎn)O,它每秒1個(gè)單位長(zhǎng)的速度由起始位置向外擴(kuò)大(即點(diǎn)O不動(dòng),正方形EFGH經(jīng)過(guò)一秒由6×6擴(kuò)大為8×8;再經(jīng)過(guò)一秒,由8×8擴(kuò)大為10×10;…),直到充滿(mǎn)正方形ABCD,再以同樣的速度逐步縮小到起始時(shí)的大小,然后一直不斷地以同樣速度再擴(kuò)大、再縮。
另有一個(gè)邊長(zhǎng)為6個(gè)單位長(zhǎng)的正方形MNPQ從如圖1所示的位置開(kāi)始,以每秒1個(gè)單位長(zhǎng)的速度,沿正方形ABCD的內(nèi)側(cè)邊緣按A?B?C?D?A移動(dòng)(即正方形MNPQ從點(diǎn)P與點(diǎn)A重合位置開(kāi)始,先向左平移,當(dāng)點(diǎn)Q與點(diǎn)B重合時(shí),再向上平移,當(dāng)點(diǎn)M與點(diǎn)C重合時(shí),再向右平移,當(dāng)點(diǎn)N與點(diǎn)D重合時(shí),再向下平移,到達(dá)起始位置后仍繼續(xù)按上述方式移動(dòng)).
正方形EFGH和正方形MNPQ從如圖1的位置同時(shí)開(kāi)始運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為x秒,它們的重疊部分面積為y個(gè)平方單位.
(1)請(qǐng)你在圖2和圖3中分別畫(huà)出x為2秒、18秒時(shí),正方形EFGH和正方形MNPQ的位置及重疊部分(重疊部分用陰影表示),并分別寫(xiě)出重疊部分的面積;
(2)①如圖4,當(dāng)1≤x≤3.5時(shí),求y與x的函數(shù)關(guān)系式;
②如圖5,當(dāng)3.5≤x≤7時(shí),求y與x的函數(shù)關(guān)系式;
③如圖6,當(dāng)7≤x≤10.5時(shí),求y與x的函數(shù)關(guān)系式;
④如圖7,當(dāng)10.5≤x≤13時(shí),求y與x的函數(shù)關(guān)系式.
(3)對(duì)于正方形MNPQ在正方形ABCD各邊上移動(dòng)一周的過(guò)程,請(qǐng)你根據(jù)重疊部分面積y的變化情況,指出y取得最大值和最小值時(shí),相對(duì)應(yīng)的x的取值情況,并指出最大值和最小值分別是多少.(說(shuō)明:?jiǎn)栴}(3)是額外加分題,加分幅度為1~4分)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2006年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(09)(解析版) 題型:解答題

(2006•河北)圖1至圖7的正方形霓虹燈廣告牌ABCD都是20×20的等距網(wǎng)格(每個(gè)小方格的邊長(zhǎng)均為1個(gè)單位長(zhǎng)),其對(duì)稱(chēng)中心為點(diǎn)O.
如圖1,有一個(gè)邊長(zhǎng)為6個(gè)單位長(zhǎng)的正方形EFGH的對(duì)稱(chēng)中心也是點(diǎn)O,它每秒1個(gè)單位長(zhǎng)的速度由起始位置向外擴(kuò)大(即點(diǎn)O不動(dòng),正方形EFGH經(jīng)過(guò)一秒由6×6擴(kuò)大為8×8;再經(jīng)過(guò)一秒,由8×8擴(kuò)大為10×10;…),直到充滿(mǎn)正方形ABCD,再以同樣的速度逐步縮小到起始時(shí)的大小,然后一直不斷地以同樣速度再擴(kuò)大、再縮。
另有一個(gè)邊長(zhǎng)為6個(gè)單位長(zhǎng)的正方形MNPQ從如圖1所示的位置開(kāi)始,以每秒1個(gè)單位長(zhǎng)的速度,沿正方形ABCD的內(nèi)側(cè)邊緣按A?B?C?D?A移動(dòng)(即正方形MNPQ從點(diǎn)P與點(diǎn)A重合位置開(kāi)始,先向左平移,當(dāng)點(diǎn)Q與點(diǎn)B重合時(shí),再向上平移,當(dāng)點(diǎn)M與點(diǎn)C重合時(shí),再向右平移,當(dāng)點(diǎn)N與點(diǎn)D重合時(shí),再向下平移,到達(dá)起始位置后仍繼續(xù)按上述方式移動(dòng)).
正方形EFGH和正方形MNPQ從如圖1的位置同時(shí)開(kāi)始運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為x秒,它們的重疊部分面積為y個(gè)平方單位.
(1)請(qǐng)你在圖2和圖3中分別畫(huà)出x為2秒、18秒時(shí),正方形EFGH和正方形MNPQ的位置及重疊部分(重疊部分用陰影表示),并分別寫(xiě)出重疊部分的面積;
(2)①如圖4,當(dāng)1≤x≤3.5時(shí),求y與x的函數(shù)關(guān)系式;
②如圖5,當(dāng)3.5≤x≤7時(shí),求y與x的函數(shù)關(guān)系式;
③如圖6,當(dāng)7≤x≤10.5時(shí),求y與x的函數(shù)關(guān)系式;
④如圖7,當(dāng)10.5≤x≤13時(shí),求y與x的函數(shù)關(guān)系式.
(3)對(duì)于正方形MNPQ在正方形ABCD各邊上移動(dòng)一周的過(guò)程,請(qǐng)你根據(jù)重疊部分面積y的變化情況,指出y取得最大值和最小值時(shí),相對(duì)應(yīng)的x的取值情況,并指出最大值和最小值分別是多少.(說(shuō)明:?jiǎn)栴}(3)是額外加分題,加分幅度為1~4分)

查看答案和解析>>

同步練習(xí)冊(cè)答案