已知:如圖,在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,D、E分別是AC、AB的中點,連接DE,點P從點D出發(fā),沿DE方向勻速運動,速度為1cm/s;同時,點Q從點B出發(fā),沿BA方向勻速運動,速度為2cm/s,當點P停止運動時,點Q也停止運動.連接PQ,設(shè)運動時間為t(s)(0<t<4).解答下列問題:
(1)當t為何值時,PQ⊥AB?
(2)當點Q在BE之間運動時,設(shè)五邊形PQBCD的面積為y(cm2),求y與t之間的函數(shù)關(guān)系式;
(3)在(2)的情況下,是否存在某一時刻t,使PQ分四邊形BCDE兩部分的面積之比為S△PQE:S五邊形PQBCD=1:29?若存在,求出此時t的值以及點E到PQ的距離h;若不存在,請說明理由.
作业宝

解:(1)如圖①,在Rt△ABC中,
AC=6,BC=8
∴AB=
∵D、E分別是AC、AB的中點.
AD=DC=3,AE=EB=5,DE∥BC且
DE=BC=4
∵PQ⊥AB,
∴∠PQB=∠C=90°
又∵DE∥BC
∴∠AED=∠B
∴△PQE∽△ACB

由題意得:PE=4-t,QE=2t-5,
,
解得t=

(2)如圖②,過點P作PM⊥AB于M,
由△PME∽△ACB,得,
,得PM=(4-t).
S△PQE=EQ•PM=(5-2t)•(4-t)=t2-t+6,
S梯形DCBE=×(4+8)×3=18,
∴y=18-(t2-t+6)=t2+t+12.

(3)假設(shè)存在時刻t,使S△PQE:S五邊形PQBCD=1:29,
則此時S△PQE=S梯形DCBE,
t2-t+6=×18,
即2t2-13t+18=0,
解得t1=2,t2=(舍去).
當t=2時,
PM=×(4-2)=,ME=×(4-2)=,
EQ=5-2×2=1,MQ=ME+EQ=+1=,
∴PQ===
PQ•h=
∴h==(或).
分析:(1)如圖①所示,當PQ⊥AB時,△PQE是直角三角形.解決問題的要點是將△PQE的三邊長PE、QE、PQ用時間t表示,這需要利用相似三角形(△PQE∽△ACB)比例線段關(guān)系(或三角函數(shù));
(2)本問關(guān)鍵是利用等式“五邊形PQBCD的面積=四邊形DCBE的面積-△PQE的面積”,如圖②所示.為求△PQE的面積,需要求出QE邊上的高,因此過P點作QE邊上的高,利用相似關(guān)系(△PME∽△ABC)求出高的表達式,從而問題解決;
(3)本問要點是根據(jù)題意,列出一元二次方程并求解.假設(shè)存在時刻t,使S△PQE:S五邊形PQBCD=1:29,則此時S△PQE=S梯形DCBE,由此可列出一元二次方程,解方程即求得時刻t;點E到PQ的距離h利用△PQE的面積公式得到.
點評:本題是動點型綜合題,解題關(guān)鍵是掌握動點運動過程中的圖形形狀、圖形面積的表示方法.所考查的知識點涉及到勾股定理、相似三角形的判定與性質(zhì)、三角形中位線定理、解方程(包括一元一次方程和一元二次方程)等,有一定的難度.注意題中求時刻t的方法:最終都是轉(zhuǎn)化為一元一次方程或一元二次方程求解.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,在Rt△ABC中,∠C=90°,過點B作BD∥AC,且BD=2AC,連接AD.試判斷△ABD的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1997•陜西)已知,如圖,在Rt△ABC中,∠C=90°,以AC為直徑的⊙O交斜邊AB于E,OD∥AB.求證:①ED是⊙O的切線;②2DE2=BE•OD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•豐臺區(qū)一模)已知:如圖,在Rt△ABC中,∠ABC=90°,以AB為直徑的⊙O交AC于點D,E是BC的中點,連結(jié)DE.
(1)求證:DE與⊙O相切;
(2)連結(jié)OE,若cos∠BAD=
3
5
,BE=
14
3
,求OE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,在Rt△ABC中,∠C=90°,BC=4,AC=8,點D在斜邊AB上,分別作DE⊥AC,DF⊥BC,垂足分別為E、F,得四邊形DECF,設(shè)DE=x,DF=y.
(1)求出cosB的值;
(2)用含y的代數(shù)式表示AE;
(3)求y與x之間的函數(shù)關(guān)系式,并求出x的取值范圍;
(4)設(shè)四邊形DECF的面積為S,求出S的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知,如圖,在Rt△ABC中,∠C=90°,AC=15,BC=20,求斜邊AB上的高CD.

查看答案和解析>>

同步練習冊答案