計(jì)算與解方程
(1)數(shù)學(xué)公式;

(2)2x2-x-3=0.

解:(1)原式=(2-(2-(4-18+12-9),
=11-6+5+6,
=11+5;

(2)∵2x2-x-3=0,
∴x2-x+(2=+(2
∴(x-2=
∴x1=-1,x2=
分析:(1)利用平方差公式和二次根式的乘法法則計(jì)算即可;
(2)利用配方法解一元二次方程即可.
點(diǎn)評(píng):(1)本題考查了二次根式的混合運(yùn)算,二次根式的混合運(yùn)算是二次根式乘法、除法及加減法運(yùn)算法則的綜合運(yùn)用.學(xué)習(xí)二次根式的混合運(yùn)算應(yīng)注意以下幾點(diǎn):
①與有理數(shù)的混合運(yùn)算一致,運(yùn)算順序先乘方再乘除,最后加減,有括號(hào)的先算括號(hào)里面的.②在運(yùn)算中每個(gè)根式可以看做是一個(gè)“單項(xiàng)式“,多個(gè)不同類的二次根式的和可以看作“多項(xiàng)式“.
(2)本題考查了用配方法解一元二次方程,用配方法解一元二次方程的步驟:①把原方程化為ax2+bx+c=0(a≠0)的形式;②方程兩邊同除以二次項(xiàng)系數(shù),使二次項(xiàng)系數(shù)為1,并把常數(shù)項(xiàng)移到方程右邊;③方程兩邊同時(shí)加上一次項(xiàng)系數(shù)一半的平方;④把左邊配成一個(gè)完全平方式,右邊化為一個(gè)常數(shù);⑤如果右邊是非負(fù)數(shù),就可以進(jìn)一步通過(guò)直接開(kāi)平方法來(lái)求出它的解,如果右邊是一個(gè)負(fù)數(shù),則判定此方程無(wú)實(shí)數(shù)解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

計(jì)算與解方程:
(1)
3-x
2x-4
÷(x+2-
5
x-2
)
;
(2)
x
x-y
y2
x+y
-
x4y
x4-y4
÷
x2
x2+y2
;
(3)
5
2x+3
=
3
x-1

(4)
x
x+2
-
x+2
x-2
=
8
x2-4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

計(jì)算與解方程:
(1)
2
2
+1
-(
2
-
3
)0+
18
-
1
2
÷2-2
;
(2)(2x-3)2-(2x-3)=6.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

計(jì)算與解方程:
(1)33+(-32)+7-(-3)
(2)-|-32|÷3×(-
1
3
)-(-2)3
(3)2(a2b-2ab2+c)-(2c+3a2b-ab2)、
(4)(-2)3-2×(-3)+|2-5|-(-1)2010
(5)化簡(jiǎn)求值:3x2y-[6xy-2(4xy-2)-x2y]+1,其中x=-
1
2

(6)已知多項(xiàng)式(2mx2+5x2+3x+1)-(5x2-4y2+3x)化簡(jiǎn)后不含x2項(xiàng).求多項(xiàng)式2m3-[3m3-(4m-5)+m]的值.
(7)解方程:①3x+3=2x+7         ②
2(x+1)
3
=
5(x+1)
6
-1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

計(jì)算與解方程
(1)3
2
+
18
-
12
+2
3

(2)
24
-
12
×
6
+
24
×2
3

(3)解方程:(x+4)2=5(x+4)
(4)解方程:2x2+3=7x.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

計(jì)算與解方程
(1)(
x+2
x2-2x
-
x-1
x2-4x+4
x-4
x

(2)
x+1
x-1
-
4
x2-1
=1

查看答案和解析>>

同步練習(xí)冊(cè)答案