某醫(yī)藥研究所進(jìn)行某一治療病毒新藥的開發(fā),經(jīng)過大量的服用試驗(yàn)后知,成年人按規(guī)定的劑量服用后,每毫升血液中含藥量y微克(1微克=10-3毫克)隨時(shí)間x小時(shí)的變化規(guī)律與某一個二次函數(shù)y=ax2+bx+c(a≠0)相吻合,并測得服用時(shí)(即時(shí)間為0時(shí))每毫升血液中含藥量為0微克;服用后2小時(shí)每毫升血液中含藥量為6微克;服用后3小時(shí),每毫升血液中含藥量為7.5微克.
(1)試求出含藥量y(微克)與服藥時(shí)間x(小時(shí))的函數(shù)表達(dá)式,并畫出0≤x≤8內(nèi)的函數(shù)圖象的示意圖;
(2)求服藥后幾小時(shí),才能使每毫升血液中含藥量最大并求出血液中的最大含藥量;
(3)結(jié)合圖象說明一次服藥后的有效時(shí)間是多少小時(shí)?(有效時(shí)間為血液中含藥量不為0的總時(shí)間)
【答案】
分析:(1)由題意可列出二次函數(shù)的方程組解得a,b,c.求出函數(shù)關(guān)系式;
(2)要求最大值,把函數(shù)關(guān)系式用配方法表達(dá)出來即可;
(3)令y=0,求出x的實(shí)際值,就是一次服藥后的有效時(shí)間.
解答:解:(1)由題意得
,
解得
,
所以y=-
x
2+4x,
示意圖如圖所示:
(2)由題意y=-
x
2+4x=-
(x-4)
2+8,
所以服藥后4小時(shí),才能使血液中含藥量最大,這時(shí)每毫升血液中含有藥液8微克;
(3)當(dāng)y=0時(shí),x
1=0,x
2=8,
故一次服藥后的有效時(shí)間為8小時(shí).
點(diǎn)評:求二次函數(shù)的最大(。┲涤腥N方法,第一種可由圖象直接得出,第二種是配方法,第三種是公式法,常用的是后兩種方法.本題綜合性較強(qiáng),考查了待定系數(shù)法,畫圖能力等相關(guān)知識.
科目:初中數(shù)學(xué)
來源:2005年四川省綿陽市鹽亭縣黃甸鎮(zhèn)初級中學(xué)中考數(shù)學(xué)模擬試卷(七)(解析版)
題型:解答題
某醫(yī)藥研究所進(jìn)行某一治療病毒新藥的開發(fā),經(jīng)過大量的服用試驗(yàn)后知,成年人按規(guī)定的劑量服用后,每毫升血液中含藥量y微克(1微克=10-3毫克)隨時(shí)間x小時(shí)的變化規(guī)律與某一個二次函數(shù)y=ax2+bx+c(a≠0)相吻合,并測得服用時(shí)(即時(shí)間為0時(shí))每毫升血液中含藥量為0微克;服用后2小時(shí)每毫升血液中含藥量為6微克;服用后3小時(shí),每毫升血液中含藥量為7.5微克.
(1)試求出含藥量y(微克)與服藥時(shí)間x(小時(shí))的函數(shù)表達(dá)式,并畫出0≤x≤8內(nèi)的函數(shù)圖象的示意圖;
(2)求服藥后幾小時(shí),才能使每毫升血液中含藥量最大并求出血液中的最大含藥量;
(3)結(jié)合圖象說明一次服藥后的有效時(shí)間是多少小時(shí)?(有效時(shí)間為血液中含藥量不為0的總時(shí)間)
查看答案和解析>>