分析 (1)根據(jù)等腰三角形的性質(zhì)、平行線(xiàn)的性質(zhì)證明即可;
(2)連接BD,根據(jù)弦、弧、圓心角的關(guān)系得到∠CAD=∠CDA=∠OAD=30°,根據(jù)圓周角定理得到∠DOB=60°,根據(jù)切線(xiàn)的性質(zhì)得到∠OBE=90°,利用弧長(zhǎng)公式計(jì)算即可.
解答 (1)證明:∵OA=OD,
∴∠OAD=∠ODA,
∵CD∥AB,
∴∠CDA=∠OAD,
∴∠CDA=∠ODA,即DA平分∠CDO;
(2)解:連接BD,
∵AC=CD,
∴$\widehat{AC}$=$\widehat{CD}$,
∴∠CAD=∠CDA,
∵∠CDA=∠OAD,
∴∠CAD=∠CDA=∠OAD=90°×$\frac{1}{3}$=30°,
∴∠DOB=60°,
∴△BOD是等邊三角形,
∴$\widehat{BD}$的長(zhǎng)為:$\frac{60π×6}{180}$2π,
∵BE是⊙O的切線(xiàn),
∴∠OBE=90°,
∴∠DBE=30°,
∵CD∥AB,∠OBE=90°,
∴∠E=90°,
∴DE=$\frac{1}{2}$BD=3,BE=BD•cos∠DBE=3$\sqrt{3}$,
∴圖中陰影部分的周長(zhǎng)為3+3$\sqrt{3}$+2π.
點(diǎn)評(píng) 本題考查的是切線(xiàn)的性質(zhì)、弧長(zhǎng)的計(jì)算,掌握?qǐng)A的切線(xiàn)垂直于經(jīng)過(guò)切點(diǎn)的半徑是解題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -1<a≤1 | B. | a>1 | C. | a<1 | D. | a>0 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{2100}{30x}$=$\frac{1200}{20(26-x)}$ | B. | $\frac{2100}{x}$×30=$\frac{1200}{26-x}$×20 | ||
C. | $\frac{2100}{20x}$=$\frac{1200}{30(26-x)}$ | D. | $\frac{2100}{x}$=$\frac{1200}{26-x}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 0 | B. | 2017 | C. | -1 | D. | 1 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | y3<y1<y2 | B. | y3<y2<y1 | C. | y2<y1<y3 | D. | y1<y2<y3 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com