11、定理“直角三角形兩銳角互余”的逆命題是
如果三角形兩個銳角互余,那么這個三角形是直角三角形
分析:先找到原命題的題設(shè)和結(jié)論,再將題設(shè)和結(jié)論互換,即可而得到原命題的逆命題.
解答:解:因?yàn)椤爸苯侨切蝺射J角互余”的題設(shè)是“三角形是直角三角形”,結(jié)論是“兩個銳角互余”,
所以逆命題是:“如果三角形兩個銳角互余,那么這個三角形是直角三角形”.
點(diǎn)評:本題考查了互逆命題的知識,兩個命題中,如果第一個命題的條件是第二個命題的結(jié)論,而第一個命題的結(jié)論又是第二個命題的條件,那么這兩個命題叫做互逆命題.其中一個命題稱為另一個命題的逆命題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

24、在研究三角形內(nèi)角和等于180°的證明方法時,小胡和小杜分別給出了下列證法.
小胡:在△ABC中,延長BC到D(如左圖),
∴∠ACD=∠A+∠B(三角形一個外角等于和它不相鄰的兩個內(nèi)角的和).
又∵∠ACD+∠ACB=180°(平角定義),
∴∠A+∠B+∠ACB=180°(等量代換).
小杜:在△ABC中,作CD⊥AB(如右圖),
∵CD⊥AB(已知),
∴∠ADC=∠BDC=90°(直角定義).
∴∠A+∠ACD=90°,∠B+∠BCD=90°(直角三角形兩銳角互余).
∴∠A+∠ACD+∠B+∠BCD=180°(等量加等量和相等).
∴∠A+∠B+∠ACB=180°.
請你對上述兩名同學(xué)的證法給出評價,并另寫出一種你認(rèn)為較簡單的證明三角形內(nèi)角和定理的方法.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

下列定理中,沒有逆定理的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

下列定理中,逆命題是假命題的是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

下列定理中,沒有逆定理的是(  )
A.兩直線平行,內(nèi)錯角相等
B.直角三角形兩銳角互余
C.對頂角相等
D.同位角相等,兩直線平行

查看答案和解析>>

同步練習(xí)冊答案