如圖,在平面直角坐標(biāo)系中,Rt△PBD的斜邊PB落在y軸上,tan∠BPD=.延長BD交x軸于點C,過點D作DA⊥x軸,垂足為A,OA=4,OB=3.
(1)求點C的坐標(biāo);
(2)若點D在反比例函數(shù)y=(k>0)的圖象上,求反比例函數(shù)的解析式.
科目:初中數(shù)學(xué) 來源: 題型:
點A(-1,0)B(4,0)C(0,2)是平面直角坐標(biāo)系上的三點。
① 如圖1先過A、B、C作△ABC,然后在在軸上方作一個正方形D1E1F1G1,
使D1E1在AB上, F1、G1分別在BC、AC上
② 如圖2先過A、B、C作圓⊙M,然后在軸上方作一個正方形D2E2F2G2,
使D2E2在軸上 ,F(xiàn)2、G2在圓上
③ 如圖3先過A、B、C作拋物線,然后在軸上方作一個正方形D3E3F3G3,
使D3E3在軸上, F3、G3在拋物線上
請比較 正方形D1E1F1G1 , 正方形D2E2F2G2 , 正方形D3E3F3G3 的面積大小
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,A、B、C、D四個點均在⊙O上,∠AOD=70°,AO∥DC,則∠B的度數(shù)為( 。
| A. | 40° | B. | 45° | C. | 50° | D. | 55° |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,是將菱形ABCD以點O為中心按順時針方向分別旋轉(zhuǎn)90°,180°,270°后形成的圖形.若∠BAD=60°,AB=2,則圖中陰影部分的面積為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖1,拋物線y=ax2+bx+c(a>0)的頂點為M,直線y=m與x軸平行,且與拋物線交于點A,B,若△AMB為等腰直角三角形,我們把拋物線上A,B兩點之間的部分與線段AB圍成的圖形稱為該拋物線對應(yīng)的準(zhǔn)蝶形,線段AB稱為碟寬,頂點M稱為碟頂,點M到線段AB的距離稱為碟高.
(1)拋物線y=x2對應(yīng)的碟寬為 ;拋物線y=4x2對應(yīng)的碟寬為 ;拋物線y=ax2(a>0)對應(yīng)的碟寬為 ;拋物線y=a(x﹣2)2+3(a>0)對應(yīng)的碟寬為 ;
(2)拋物線y=ax2﹣4ax﹣(a>0)對應(yīng)的碟寬為6,且在x軸上,求a的值;
(3)將拋物線y=anx2+bnx+cn(an>0)的對應(yīng)準(zhǔn)蝶形記為Fn(n=1,2,3…),定義F1,F(xiàn)2,…,F(xiàn)n為相似準(zhǔn)蝶形,相應(yīng)的碟寬之比即為相似比.若Fn與Fn﹣1的相似比為,且Fn的碟頂是Fn﹣1的碟寬的中點,現(xiàn)將(2)中求得的拋物線記為y1,其對應(yīng)的準(zhǔn)蝶形記為F1.
①求拋物線y2的表達(dá)式;
②若F1的碟高為h1,F(xiàn)2的碟高為h2,…Fn的碟高為hn,則hn= ,F(xiàn)n的碟寬有端點橫坐標(biāo)為 ;F1,F(xiàn)2,…,F(xiàn)n的碟寬右端點是否在一條直線上?若是,直接寫出該直線的表達(dá)式;若不是,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
某市出租車起步價是5元(3公里及3公里以內(nèi)為起步價),以后每公里收費是1.6元,不足1公里按1公里收費,小明乘出租車到達(dá)目的地時計價器顯示為11.4元,則此出租車行駛的路程可能為( 。
| A. | 5.5公里 | B. | 6.9公里 | C. | 7.5公里 | D. | 8.1公里 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
甲、乙兩名同學(xué)進(jìn)入初四后,某科6次考試成績?nèi)鐖D:
(1)請根據(jù)下圖填寫如表:
平均數(shù) | 方差 | 中位數(shù) | 眾數(shù) | 極差 | |
甲 | 75 |
| 75 |
|
|
乙 |
| 33.3 |
|
| 15 |
(2)請你分別從以下兩個不同的方面對甲、乙兩名同學(xué)6次考試成績進(jìn)行分析:
①從平均數(shù)和方差相結(jié)合看;②從折線圖上兩名同學(xué)分?jǐn)?shù)的走勢上看,你認(rèn)為反映出什么問題?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com