在△ABC中,∠BAC=120°,AB=AC,BC=4,建立如下圖的平面直角坐標系,則A、B、C個點的坐標分別是;A    、B    、C   
【答案】分析:根據(jù)∠BAC=120°,AB=AC,OA⊥BC,可知:OB=OC=BC,∠CAO=∠BAC.
在Rt△AOC中,可求OA的長,進而寫出點A、B、C的坐標.
解答:解:∵∠BAC=120°,AB=AC,OA⊥BC,BC=4,
∴OB=OC=BC=2,∠CAO=∠BAC=60°.
在Rt△AOC中,OA=cot∠CAO×OC=×2=
∴A(0,),B(-2,0),C(2,0).
點評:本題主要考查解直角三角形.在解題過程中注意數(shù)形結合確定點的坐標.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖所示,在△ABC中,BA=BC=20cm,AC=30cm,點P從A點出發(fā),沿著AB以每秒4cm的速度向B點運動精英家教網;同時點Q從C點出發(fā),沿CA以每秒3cm的速度向A點運動,設運動時間為x.
(1)當x為何值時,PQ∥BC;
(2)當
S△BCQ
S△ABC
=
1
3
,求
S△BPQ
S△ABC
的值;
(3)△APQ能否與△CQB相似?若能,求出AP的長;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•北京)在△ABC中,BA=BC,∠BAC=α,M是AC的中點,P是線段BM上的動點,將線段PA繞點P順時針旋轉2α得到線段PQ.
(1)若α=60°且點P與點M重合(如圖1),線段CQ的延長線交射線BM于點D,請補全圖形,并寫出∠CDB的度數(shù);

(2)在圖2中,點P不與點B,M重合,線段CQ的延長線于射線BM交于點D,猜想∠CDB的大。ㄓ煤恋拇鷶(shù)式表示),并加以證明;
(3)對于適當大小的α,當點P在線段BM上運動到某一位置(不與點B,M重合)時,能使得線段CQ的延長線與射線BM交于點D,且PQ=QD,請直接寫出α的范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖所示,在△ABC中,BA=BC=20cm,AC=30cm,點P從點A出發(fā),沿AB以4cm/s的速度向點B運動,同時點Q從C點出發(fā),沿CA以3cm/s的速度向點A運動,設運動時間為x秒.
(1)當x為何值時,BP=CQ;
(2)△APQ能否與△CQB相似?若能,求出x的值;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•宿遷)(1)如圖1,在△ABC中,BA=BC,D,E是AC邊上的兩點,且滿足∠DBE=
1
2
∠ABC(0°<∠CBE<∠
1
2
ABC).以點B為旋轉中心,將△BEC按逆時針旋轉∠ABC,得到△BE′A(點C與點A重合,點E到點E′處)連接DE′,
求證:DE′=DE.
(2)如圖2,在△ABC中,BA=BC,∠ABC=90°,D,E是AC邊上的兩點,且滿足∠DBE=
1
2
∠ABC(0°<∠CBE<45°).
求證:DE2=AD2+EC2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖所示,在△ABC中,BA=BC=20cm,AC=30cm,點P從點A出發(fā),沿AB以每秒4cm,的速度向點B運動,同時點Q從C點出發(fā),沿CA以3cm/s的速度向點A運動,設運動時間為x秒.
(1)當x為何值時,BP=CQ
(2)當x為何值時,PQ∥BC
(3)△APQ能否與△CQB相似?若能,求出x的值;若不能,請說明理由.

查看答案和解析>>

同步練習冊答案