如圖,△ABC是等腰直角三角形,∠ACB=90°,BC=AC,把△ABC繞點(diǎn)A按順時(shí)針?lè)较蛐D(zhuǎn)45°后得到△AB′C′,若AB=2,則線(xiàn)段BC在上述旋轉(zhuǎn)過(guò)程中所掃過(guò)部分(陰影部分)的面積是多少?(結(jié)果保留π).
分析:根據(jù)等腰直角三角形的直角邊等于斜邊的
2
2
倍求出AC,再根據(jù)旋轉(zhuǎn)變換只改變圖形的位置不改變圖形的形狀與大小可得△AB′C′和△ABC全等,然后推出陰影部分的面積等于扇形ABB′的面積減去扇形ACC′的面積,再根據(jù)扇形的面積公式列式進(jìn)行計(jì)算即可得解.
解答:解:∵△ABC是等腰直角三角形,AB=2,
∴∠BAC=45°,AC=
2
2
AB=
2
2
×2=
2
,
∵△ABC繞點(diǎn)A按順時(shí)針?lè)较蛐D(zhuǎn)45°后得到△AB′C′,
∴△AB′C′≌△ABC,
∴S陰影=S扇形ABB′+S△AB′C′-S△ABC-S扇形ACC′=S扇形ABB′-S扇形ACC′,
∴陰影部分的面積=
45•π•22
360
-
45•π
2
2
360
=
1
4
π.
點(diǎn)評(píng):本題考查了旋轉(zhuǎn)的性質(zhì),等腰直角三角形的性質(zhì),扇形的面積計(jì)算,根據(jù)旋轉(zhuǎn)的性質(zhì)得到兩三角形全等,然后推出陰影部分的面積等于兩個(gè)扇形的面積的差是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,△ABC是等腰直角三角形,BC是斜邊,點(diǎn)P是△ABC內(nèi)一定點(diǎn),延長(zhǎng)BP至P′,將△ABP繞點(diǎn)A旋轉(zhuǎn)后,與△ACP′重合,如果AP=
2
,那么PP′=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

22、如圖,△ABC是等腰三角形,AB=AC,D為直線(xiàn)BC上一點(diǎn),DE⊥AC,DF⊥AB,CH⊥AB,
(1)如圖(1)若D為BC的中點(diǎn),求證:DE+DF=CH.
(2)如圖(2)若D為BC延長(zhǎng)線(xiàn)上一點(diǎn),其他條件不變,線(xiàn)段DE.DF.CH 之間有何數(shù)量關(guān)系,請(qǐng)證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,△ABC是等腰直角三角形,∠ACB=90°,BC=AC,把△ABC繞點(diǎn)A按順時(shí)針?lè)较蛐D(zhuǎn)45°后得到△AB′C′,若AB=2,則線(xiàn)段BC在上述旋轉(zhuǎn)過(guò)程中所掃過(guò)部分(陰影部分)的面積是
 
(結(jié)果保留π).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•資陽(yáng))如圖,△ABC是等腰三角形,點(diǎn)D是底邊BC上異于BC中點(diǎn)的一個(gè)點(diǎn),∠ADE=∠DAC,DE=AC.運(yùn)用這個(gè)圖(不添加輔助線(xiàn))可以說(shuō)明下列哪一個(gè)命題是假命題?( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,△ABC是等腰直角三角形,D為斜邊AB上任意一點(diǎn)(不與A,B重合),連接CD,作EC⊥DC,且EC=DC,連接AE.
(1)求證:∠E+∠ADC=180°.
(2)猜想:當(dāng)點(diǎn)D在何位置時(shí),四邊形AECD是正方形?說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案