如圖,在△ABC中,∠BAC=90°,AB=AC=6,D為BC的中點(diǎn).

(1)若E、F分別是AB、AC上的點(diǎn),且AE=CF,求證:△AED≌△CFD;

(2)當(dāng)點(diǎn)F、E分別從C、A兩點(diǎn)同時(shí)出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度沿CA、AB運(yùn)動(dòng),到點(diǎn)A、B時(shí)停止;設(shè)△DEF的面積為y,F(xiàn)點(diǎn)運(yùn)動(dòng)的時(shí)間為x,求y與x的函數(shù)關(guān)系式;

(3)在(2)的條件下,點(diǎn)F、E分別沿CA、AB的延長(zhǎng)線繼續(xù)運(yùn)動(dòng),求此時(shí)y與x的函數(shù)關(guān)系式.

 

【答案】

(1)利用等腰直角三角形的性質(zhì)得到∠BAD=∠DAC=∠B=∠C=45°,進(jìn)而得到AD=BD=DC,為證明△AED≌△CFD提供了重要的條件;(2);(3)

【解析】

試題分析:(1)利用等腰直角三角形的性質(zhì)得到∠BAD=∠DAC=∠B=∠C=45°,進(jìn)而得到AD=BD=DC,為證明△AED≌△CFD提供了重要的條件;

(2)利用S四邊形AEDF=S△AED+S△ADF=S△CFD+S△ADF=S△ADC="9" 即可得到y(tǒng)與x之間的函數(shù)關(guān)系式;

(3)依題意有:AF=BE=x-6,AD=DB,∠ABD=∠DAC=45°得到∠DAF=∠DBE=135°,從而得到△ADF≌△BDE,利用全等三角形面積相等得到S△ADF=S△BDE從而得到S△EDF=S△EAF+S△ADB即可確定兩個(gè)變量之間的函數(shù)關(guān)系式.

(1)∵∠BAC=90° AB=AC=6,D為BC中點(diǎn)

∴∠BAD=∠DAC=∠B=∠C=45°    

∴AD=BD=DC

∵AE=CF

∴△AED≌△CFD(SAS)    

(2)依題意有:FC=AE=x,

∵△AED≌△CFD

∴S四邊形AEDF=S△AED+S△ADF=S△CFD+S△ADF=S△ADC=9     

∴S△EDF=S四邊形AEDF-S△AEF=9-(6-x)x=x2-3x+9

;

(3)依題意有:AF=BE=x-6,AD=DB,∠ABD=∠DAC=45°

∴∠DAF=∠DBE=135°    

∴△ADF≌△BDE    

∴S△ADF=S△BDE

∴S△EDF=S△EAF+S△ADB=(x-6)x+9=x2-3x+9

考點(diǎn):動(dòng)點(diǎn)問(wèn)題的綜合題

點(diǎn)評(píng):此類問(wèn)題難度較大,在中考中比較常見(jiàn),一般在壓軸題中出現(xiàn),需特別注意.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

20、如圖,在△ABC中,∠BAC=45°,現(xiàn)將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)30°至△ADE的位置,使AC⊥DE,則∠B=
75
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在△ABC中,∠ACB=90°,AC=BC=1,取斜邊的中點(diǎn),向斜邊作垂線,畫(huà)出一個(gè)新的等腰三角形,如此繼續(xù)下去,直到所畫(huà)出的直角三角形的斜邊與△ABC的BC重疊,這時(shí)這個(gè)三角形的斜邊為
( 。
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

2、如圖,在△ABC中,DE∥BC,那么圖中與∠1相等的角是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

14、如圖,在△ABC中,AB=BC,邊BC的垂直平分線分別交AB、BC于點(diǎn)E、D,若BC=10,AC=6cm,則△ACE的周長(zhǎng)是
16
cm.

查看答案和解析>>

同步練習(xí)冊(cè)答案