(2007•臨汾)閱讀材料并解答問題:
與正三角形各邊都相切的圓叫做正三角形的內(nèi)切圓,與正四邊形各邊都相切的圓叫做正四邊形的內(nèi)切圓,與正n邊形各邊都相切的圓叫做正n邊形的內(nèi)切圓,設(shè)正n(n≥3)邊形的面積為S正n邊形,其內(nèi)切圓的半徑為r,試探索正n邊形的面積.

(1)如圖1,當(dāng)n=3時(shí),設(shè)AB切⊙P于點(diǎn)C,連接OC,OA,OB,
∴OC⊥AB,
∴OA=OB,
∴∠AOC=∠AOB,∴AB=2BC.
在Rt△AOC中,
∵∠AOC==60°,OC=r,
∴AC=r•tan60°,∴AB=2r•tan60°,
∴S△OAB=•r•2r•tan60°=r2tan60°,
∴S正三角形=3S△OAB=3r2•tan60度.
(2)如圖2,當(dāng)n=4時(shí),仿照(1)中的方法和過程可求得:S正四邊形=4S△OAB=______;
(3)如圖3,當(dāng)n=5時(shí),仿照(1)中的方法和過程求S正五邊形;
(4)如圖4,根據(jù)以上探索過程,請(qǐng)直接寫出S正n邊形=______.
【答案】分析:根據(jù)正n邊形倍所有的半徑分割成了n個(gè)全等三角形,只需首先計(jì)算其中一個(gè)三角形的面積.根據(jù)其邊心距結(jié)合銳角三角函數(shù)表示出正多邊形的邊長,再根據(jù)三角形的面積公式進(jìn)行計(jì)算,進(jìn)一步得到其正多邊形的面積.
解答:解:(2)4r2tan45°.(2分)

(3)如圖,當(dāng)n=5時(shí),設(shè)AB切⊙O于點(diǎn)C,連接OC,OA,OB,
∴OC⊥AB,∵OA=OB,
∵∠AOC==36°,OC=r,(3分)
∴AC=r•tan36°,∴AB=2r•tan36°,(4分)
∴S△OAB=•r•2r•tan36°=r2tan36°,(4分)
∴S正五邊形=5S△OAB=5r2•tan36°.(6分)

(4)nr2tan.(8分)
點(diǎn)評(píng):能夠熟練運(yùn)用銳角三角函數(shù)進(jìn)行求解.注意:正n邊形的半邊所對(duì)的角是中心角的一半,即
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2010年浙江省杭州市采荷中學(xué)中考數(shù)學(xué)模擬試卷(5月份)(解析版) 題型:解答題

(2007•臨汾)閱讀材料并解答問題:
與正三角形各邊都相切的圓叫做正三角形的內(nèi)切圓,與正四邊形各邊都相切的圓叫做正四邊形的內(nèi)切圓,與正n邊形各邊都相切的圓叫做正n邊形的內(nèi)切圓,設(shè)正n(n≥3)邊形的面積為S正n邊形,其內(nèi)切圓的半徑為r,試探索正n邊形的面積.

(1)如圖1,當(dāng)n=3時(shí),設(shè)AB切⊙P于點(diǎn)C,連接OC,OA,OB,
∴OC⊥AB,
∴OA=OB,
∴∠AOC=∠AOB,∴AB=2BC.
在Rt△AOC中,
∵∠AOC==60°,OC=r,
∴AC=r•tan60°,∴AB=2r•tan60°,
∴S△OAB=•r•2r•tan60°=r2tan60°,
∴S正三角形=3S△OAB=3r2•tan60度.
(2)如圖2,當(dāng)n=4時(shí),仿照(1)中的方法和過程可求得:S正四邊形=4S△OAB=______;
(3)如圖3,當(dāng)n=5時(shí),仿照(1)中的方法和過程求S正五邊形
(4)如圖4,根據(jù)以上探索過程,請(qǐng)直接寫出S正n邊形=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年陜西省中考模擬數(shù)學(xué)試卷(4)(金臺(tái)中學(xué) 楊宏舉)(解析版) 題型:解答題

(2007•臨汾)閱讀材料并解答問題:
與正三角形各邊都相切的圓叫做正三角形的內(nèi)切圓,與正四邊形各邊都相切的圓叫做正四邊形的內(nèi)切圓,與正n邊形各邊都相切的圓叫做正n邊形的內(nèi)切圓,設(shè)正n(n≥3)邊形的面積為S正n邊形,其內(nèi)切圓的半徑為r,試探索正n邊形的面積.

(1)如圖1,當(dāng)n=3時(shí),設(shè)AB切⊙P于點(diǎn)C,連接OC,OA,OB,
∴OC⊥AB,
∴OA=OB,
∴∠AOC=∠AOB,∴AB=2BC.
在Rt△AOC中,
∵∠AOC==60°,OC=r,
∴AC=r•tan60°,∴AB=2r•tan60°,
∴S△OAB=•r•2r•tan60°=r2tan60°,
∴S正三角形=3S△OAB=3r2•tan60度.
(2)如圖2,當(dāng)n=4時(shí),仿照(1)中的方法和過程可求得:S正四邊形=4S△OAB=______;
(3)如圖3,當(dāng)n=5時(shí),仿照(1)中的方法和過程求S正五邊形;
(4)如圖4,根據(jù)以上探索過程,請(qǐng)直接寫出S正n邊形=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年黑龍江省綏化市中考數(shù)學(xué)預(yù)測試卷(3)(解析版) 題型:解答題

(2007•臨汾)閱讀材料并解答問題:
與正三角形各邊都相切的圓叫做正三角形的內(nèi)切圓,與正四邊形各邊都相切的圓叫做正四邊形的內(nèi)切圓,與正n邊形各邊都相切的圓叫做正n邊形的內(nèi)切圓,設(shè)正n(n≥3)邊形的面積為S正n邊形,其內(nèi)切圓的半徑為r,試探索正n邊形的面積.

(1)如圖1,當(dāng)n=3時(shí),設(shè)AB切⊙P于點(diǎn)C,連接OC,OA,OB,
∴OC⊥AB,
∴OA=OB,
∴∠AOC=∠AOB,∴AB=2BC.
在Rt△AOC中,
∵∠AOC==60°,OC=r,
∴AC=r•tan60°,∴AB=2r•tan60°,
∴S△OAB=•r•2r•tan60°=r2tan60°,
∴S正三角形=3S△OAB=3r2•tan60度.
(2)如圖2,當(dāng)n=4時(shí),仿照(1)中的方法和過程可求得:S正四邊形=4S△OAB=______;
(3)如圖3,當(dāng)n=5時(shí),仿照(1)中的方法和過程求S正五邊形;
(4)如圖4,根據(jù)以上探索過程,請(qǐng)直接寫出S正n邊形=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2007年山西省臨汾市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2007•臨汾)閱讀材料并解答問題:
與正三角形各邊都相切的圓叫做正三角形的內(nèi)切圓,與正四邊形各邊都相切的圓叫做正四邊形的內(nèi)切圓,與正n邊形各邊都相切的圓叫做正n邊形的內(nèi)切圓,設(shè)正n(n≥3)邊形的面積為S正n邊形,其內(nèi)切圓的半徑為r,試探索正n邊形的面積.

(1)如圖1,當(dāng)n=3時(shí),設(shè)AB切⊙P于點(diǎn)C,連接OC,OA,OB,
∴OC⊥AB,
∴OA=OB,
∴∠AOC=∠AOB,∴AB=2BC.
在Rt△AOC中,
∵∠AOC==60°,OC=r,
∴AC=r•tan60°,∴AB=2r•tan60°,
∴S△OAB=•r•2r•tan60°=r2tan60°,
∴S正三角形=3S△OAB=3r2•tan60度.
(2)如圖2,當(dāng)n=4時(shí),仿照(1)中的方法和過程可求得:S正四邊形=4S△OAB=______;
(3)如圖3,當(dāng)n=5時(shí),仿照(1)中的方法和過程求S正五邊形;
(4)如圖4,根據(jù)以上探索過程,請(qǐng)直接寫出S正n邊形=______.

查看答案和解析>>

同步練習(xí)冊答案