【題目】如圖,已知一次函數(shù)與反比例函數(shù)的圖象交于點A(﹣4,﹣2)和B(a,4).
(1)求反比例函數(shù)的解析式和點B的坐標(biāo);
(2)根據(jù)圖象回答,當(dāng)x在什么范圍內(nèi)時,一次函數(shù)的值大于反比例函數(shù)的值?
【答案】(1)y=,B(2,4);(2)當(dāng)x>2或﹣4<x<0時,一次函數(shù)的值大于反比例函數(shù)的值.
【解析】
試題分析:(1)設(shè)反比例函數(shù)解析式為y=,把點A的坐標(biāo)代入解析式,利用待定系數(shù)法求反比例函數(shù)解析式即可,把點B的坐標(biāo)代入反比例函數(shù)解析式進行計算求出a的值,從而得到點B的坐標(biāo);
(2)寫出一次函數(shù)圖象在反比例函數(shù)圖象上方的x的取值范圍即可.
解:(1)設(shè)反比例函數(shù)的解析式為y=(k≠0),
∵反比例函數(shù)圖象經(jīng)過點A(﹣4,﹣2),
∴﹣2=,
∴k=8,
∴反比例函數(shù)的解析式為y=,
∵B(a,4)在y=的圖象上,
∴4=,
∴a=2,
∴點B的坐標(biāo)為B(2,4);
(2)根據(jù)圖象得,當(dāng)x>2或﹣4<x<0時,一次函數(shù)的值大于反比例函數(shù)的值.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB 為圓O的直徑,PQ切圓O于T,AC⊥PQ于C,交圓O于D .
(1)求證:AT平分∠BAC ;
(2)若 AD =2,TC=,求圓O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,∠ACB=90°,∠A=30°,CD⊥AB于D,AB=4cm,則BD的長為( ).
A. 3 B. 4 C. 1 D. 7
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是某住宅的平面結(jié)構(gòu)示意圖,圖中標(biāo)注了有尺寸(墻體厚度忽略不計,單位:米),房的主人計劃把臥室以外的地面都鋪上地磚,如果選用地磚的價格是a元/米2 , 問他買地磚至少需要用多少元?(用含a,x,y的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】解方程:
(1)2(x+1)2=8;
(2)x2+2x+1=8(配方法);
(3)2x2﹣3x﹣1=0 (公式法);
(4)64(3y﹣2)2=9(2y﹣3)2
(5)(x﹣1)2﹣4(x﹣1)+4=0.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列定理中,沒有逆定理的是( ).
A. 全等三角形對應(yīng)角相等 B. 線段垂直平分線上的點到線段兩端的距離相等
C. 一個三角形中,等角對等邊 D. 兩直線平行,同位角相等
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=﹣x2+3x+4交y軸于點A,交x軸于點B,C(點B在點C的右側(cè)).過點A作垂直于y軸的直線l.在位于直線l下方的拋物線上任取一點P,過點P作直線PQ平行于y軸交直線l于點Q.連接AP.
(1)寫出A,B,C三點的坐標(biāo);
(2)若點P位于拋物線的對稱軸的右側(cè):
①如果以A,P,Q三點構(gòu)成的三角形與△AOC相似,求出點P的坐標(biāo);
②若將△APQ沿AP對折,點Q的對應(yīng)點為點M.是否存在點P,使得點M落在x軸上?若存在,求出點P的坐標(biāo);若不存在,請說明理由;
③設(shè)AP的中點是R,其坐標(biāo)是(m,n),請直接寫出m和n的關(guān)系式,并寫出m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點P(﹣1,1)位于( 。
A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察下列各式數(shù):﹣2x,4x2 , ﹣8x3 , 16x4 , ﹣32x5 , …則第n個式子是( )
A.﹣2n﹣1xn
B.(﹣2)n﹣1xn
C.﹣2nxn
D.(﹣2)nxn
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com