【題目】如圖,在A地往北60m的B處有一幢房,西80m的C處有一變電設(shè)施,在BC的中點(diǎn)D處有古建筑.因施工需要在A處進(jìn)行一次爆破,為使房、變電設(shè)施、古建筑都不遭到破壞,問(wèn)爆破影響面的半徑應(yīng)控制在什么范圍內(nèi)?

【答案】解:連接AD,
∵AB=60,AC=80,
∴BC= = =100.
∵D是BC的中點(diǎn),
∴AD=50.
為使房、變電設(shè)施、古建筑都不遭到破壞,半徑必須比AB、AC、AD的長(zhǎng)都小,所以半徑應(yīng)控制在50m內(nèi).
【解析】先用勾股定理求出BC的長(zhǎng),根據(jù)直角三角形斜邊上的中線等于斜邊一半,得到AD的長(zhǎng),為使房、變電設(shè)施、古建筑都不遭到破壞,半徑必須比AB、AC、AD的長(zhǎng)都小.
【考點(diǎn)精析】通過(guò)靈活運(yùn)用直角三角形斜邊上的中線和勾股定理的概念,掌握直角三角形斜邊上的中線等于斜邊的一半;直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2即可以解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=﹣x2+bx+c(a≠0)經(jīng)過(guò)A、B、C三點(diǎn),點(diǎn)A、C的坐標(biāo)分別是(0,4)、(﹣1,0).

(1)求此拋物線的解析式;
(2)點(diǎn)P是第一象限內(nèi)拋物線上的一動(dòng)點(diǎn),當(dāng)△ABP的面積最大時(shí),求出此時(shí)P的坐標(biāo)及面積的最大值;
(3)若G為拋物線上的一動(dòng)點(diǎn),F(xiàn)為x軸上的一動(dòng)點(diǎn),點(diǎn)D坐標(biāo)為(1,4),點(diǎn)E坐標(biāo)為(1,0),當(dāng)D、E、F、G構(gòu)成平行四邊形時(shí),請(qǐng)直接寫(xiě)出點(diǎn)G的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在棋盤中建立如圖所示的平面直角坐標(biāo)系,三顆棋子A,O,B的位置如圖所示,它們的坐標(biāo)分別是(﹣1,1),(0,0)和(1,0)

(1)如圖,添加棋子C,使A,O,B,C四顆棋子成為一個(gè)軸對(duì)稱圖形,請(qǐng)?jiān)趫D中畫(huà)出該圖形的對(duì)稱軸;
(2)在其他個(gè)點(diǎn)位置添加一顆棋子P,使A,O,B,P四顆棋子成為一個(gè)軸對(duì)稱圖形,請(qǐng)直接寫(xiě)出棋子P的位置坐標(biāo)(寫(xiě)出2個(gè)即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】問(wèn)題背景:
如圖①,在四邊形ADBC中,∠ACB=∠ADB=90°,AD=BD,探究線段AC,BC,CD之間的數(shù)量關(guān)系.
小吳同學(xué)探究此問(wèn)題的思路是:將△BCD繞點(diǎn)D,逆時(shí)針旋轉(zhuǎn)90°到△AED處,點(diǎn)B,C分別落在點(diǎn)A,E處(如圖②),易證點(diǎn)C,A,E在同一條直線上,并且△CDE是等腰直角三角形,所以CE= CD,從而得出結(jié)論:AC+BC= CD.
簡(jiǎn)單應(yīng)用:

(1)在圖①中,若AC= ,BC=2 ,則CD=
(2)如圖③,AB是⊙O的直徑,點(diǎn)C、D在⊙上, = ,若AB=13,BC=12,求CD的長(zhǎng).
拓展規(guī)律:
(3)如圖④,∠ACB=∠ADB=90°,AD=BD,若AC=m,BC=n(m<n),求CD的長(zhǎng)(用含m,n的代數(shù)式表示)
(4)如圖⑤,∠ACB=90°,AC=BC,點(diǎn)P為AB的中點(diǎn),若點(diǎn)E滿足AE= AC,CE=CA,點(diǎn)Q為AE的中點(diǎn),則線段PQ與AC的數(shù)量關(guān)系是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,⊙M與x軸相切于點(diǎn)A(8,0),與y軸分別交于點(diǎn)B(0,4)和點(diǎn)C(0,16),則圓心M到坐標(biāo)原點(diǎn)O的距離是(  )

A.10
B.8
C.4
D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在⊙O中,AB為直徑,C為⊙O上一點(diǎn).

(1)如圖1.過(guò)點(diǎn)C作⊙O的切線,與AB的延長(zhǎng)線相交于點(diǎn)P,若∠CAB=27°,求∠P的大。
(2)如圖2,D為 上一點(diǎn),且OD經(jīng)過(guò)AC的中點(diǎn)E,連接DC并延長(zhǎng),與AB的延長(zhǎng)線相交于點(diǎn)P,若∠CAB=10°,求∠P的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是半圓O的直徑,C是半圓O上一點(diǎn),弦AD平分∠BAC,交BC于點(diǎn)E,若AB=6,AD=5,則DE的長(zhǎng)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知,⊙O為△ABC的外接圓,BC為直徑,點(diǎn)E在AB上,過(guò)點(diǎn)E作EF⊥BC,點(diǎn)G在FE的延長(zhǎng)線上,且GA=GE.
(1)求證:AG與⊙O相切.
(2)若AC=6,AB=8,BE=3,求線段OE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是⊙O的直徑,BC是⊙O的切線,切點(diǎn)為B,OC相交于點(diǎn)D,且CD=2,BC=4,
(1)求⊙O的半徑;
(2)連接AD并延長(zhǎng),交BC于點(diǎn)E,取BE的中點(diǎn)F,連接DF,試判斷DF與⊙O的位置關(guān)系,并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案