已知等腰Rt△ABC中,∠ACB=90°,AC=BC=4,P為斜邊AB上一點,Q為直線BC上一點,且PC=PQ,若BQ=2,則AP的長度為________.

3
分析:根據(jù)題意畫出圖形,求出AB,過P作PM⊥BC于M,求出PM=BM,根據(jù)等腰三角形性質(zhì)求出CM=MQ,根據(jù)已知得出關(guān)于BM的方程,求出BM、PM長,根據(jù)勾股定理求出BP,即可求出答案.
解答:在△ACB中,∠ACB=90°,AC=BC=4,由勾股定理得:AB==4,
過P作PM⊥BC于M,
則∠PMB=90°,
∵△ACB中,∠ACB=90°,AC=BC,
∴∠ABC=45°,
∴∠BPM=45°=∠ABC,
∴PM=BM,
∵PC=PQ,PM⊥BC,
∴CM=MQ,
分為兩種情況:
①如圖1,Q在線段BC上時,
∵CM=MQ,BC=4,BQ=2,
∴CM=4-BM,MQ=BM-2,
即4-BM=BM-2,
∴BM=3,
在Rt△BMP中,BM=PM=3,由勾股定理得:BP==3,
∴AP=4-3=
②如圖2,Q在CB延長線時時,
∵CM=MQ,
∴4-BM=BM+2,
∴BM=1,
Rt△BMP中,BM=PM=1,由勾股定理得:BP==,
∴AP=4-=3
故答案為:3
點評:本題考查了等腰直角三角形性質(zhì),等腰三角形性質(zhì),勾股定理的應(yīng)用,關(guān)鍵是求出BP長,注意有兩種情況.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知等腰Rt△ABC,AC=BC=2,D為射線CB上一動點,經(jīng)過點A的⊙O與BC相切于點D,交直線AC于點E.
(1)如圖1,當(dāng)點D在斜邊AB上時,求⊙O的半徑;
(2)如圖2,點D在線段BC上,使四邊形AODE為菱形時,求CD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•深圳二模)如圖,已知等腰Rt△ABC中,∠B=90°,AB=BC=8cm,點P是線段AB上的點,點Q是線段BC延長線上的點,且AP=CQ,PQ與直線AC相交于點D.作PE⊥AC于點E,則線段DE的長度( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•拱墅區(qū)二模)如圖,已知等腰Rt△ABC中,∠ACB=90°,點D為等腰Rt△ABC內(nèi)一點,∠CAD=∠CBD=15°,E為AD延長線上的一點,且CE=CA.
(1)求證:DE平分∠BDC;
(2)連接BE,設(shè)DC=a,求BE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知等腰Rt△ABC和等腰Rt△EDF,其中D、G分別為斜邊AB、EF的中點,連CE,又M為BC中點,N為CE的中點,連MN、MG
(1)如圖1,當(dāng)DE恰好過M點時,求證:∠NMG=45°,且MG=
2
MN;
(2)如圖2,當(dāng)?shù)妊黂t△EDF繞D點旋轉(zhuǎn)一定的度數(shù)時,第(1)問中的結(jié)論是否仍成立,并證明;
(3)如圖3,連BF,已知P為BF的中點,連CF與PN,若CF=6,直接寫出
PN
CF
=
2
2
2
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知等腰Rt△ABC中,∠ACB=90°,AC=BC=4,D為△ABC的一個外角∠ABF的平分線上一點,且∠ADC=45°,CD交AB于E,
(1)求證:AD=CD;
(2)求AE的長.

查看答案和解析>>

同步練習(xí)冊答案