已知△ABC的三邊分別為a,b,c,滿足(a-24)2+(b-25)2+c2+49=14c,則△ABC的形狀為


  1. A.
    銳角三角形
  2. B.
    直角三角形
  3. C.
    鈍角三角形
  4. D.
    形狀不確定
B
分析:由(a-24)2+(b-25)2+c2+49=14c可得a=24,b=25,c=7,易得72+242=252,從而△ABC為直角三角形.
解答:∵(a-24)2+(b-25)2+c2+49=14c,
∴(a-24)2+(b-25)2+(c-7)2=0,
∴a=24,b=25,c=7,又∵72+242=252,
∴△ABC為直角三角形.故選B.
點評:本題考查勾股定理的逆定理,三邊滿足勾股定理的逆定理則三角形為直角三角形.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

(1)計算:(
48
+
20
)-(
12
-
5

(2)已知△ABC的三邊分別是a=5,b=12,c=13,設(shè)p=
1
2
(a+b+c)
S1=
1
4
[a2b2-(
a2+b2-c2
2
)
2
]
,S2=
p(p-a)(p-b)(p-c)
,求S1-S2的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

3、已知△ABC的三邊分別是4,5,6,則與它相似△A′B′C′的最長邊為12,則△A′B′C′的周長是
30

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知△ABC的三邊分別是a、b、c,且滿足
a-3
+b2-4b+4=0
,則c的取值范圍是
1<c<5
1<c<5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知△ABC的三邊分別是a、b、c,且滿足a2b-a2c-b3+b2c-bc2+c3=0,試判斷△ABC的形狀.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(1)計算:(-2a)2-(a-2)(a-6)
(2)[(x-2y)2-(x-2y)(x+2y)]÷4y
(3)已知ABC的三邊分別是a=m2-n2,b=2mn,c=m2+n2.試判斷ABC是否是直角三角形.

查看答案和解析>>

同步練習冊答案