已知拋物線(xiàn)交x軸于A(x1,0)、B(x2,0),交y軸于C點(diǎn),且x1<0<x2,(AO+OB)2=12CO+1.
(1)求拋物線(xiàn)的解析式;
(2)在x軸的下方是否存在著拋物線(xiàn)上的點(diǎn)P,使∠APB為銳角?若存在,求出P點(diǎn)的橫坐標(biāo)的范圍;若不存在,請(qǐng)說(shuō)明理由.
【答案】分析:(1)可根據(jù)(AO+OB)2=12CO+1以及一元二次方程根與系數(shù)的關(guān)系來(lái)求出m的值,進(jìn)而可確定出拋物線(xiàn)的解析式;
(2)本題的關(guān)鍵是找出∠APB為直角時(shí),P點(diǎn)的位置,根據(jù)(1)的拋物線(xiàn)不難得出A,B,C三點(diǎn)的坐標(biāo)為(-1,0)(4,0)
(0,-2).如果∠APB為直角,那么點(diǎn)P必為以AB為直徑的圓與拋物線(xiàn)的交點(diǎn).據(jù)此可判斷出∠APB時(shí),P點(diǎn)橫坐標(biāo)的范圍.
解答:解:(1)拋物線(xiàn)y=x2-mx-2m交x軸于A(a,0)和B(b,0),
所以a+b=3m,a•b=-4m,
∵拋物線(xiàn)開(kāi)口向上,與X軸有兩個(gè)交點(diǎn),
∴C點(diǎn)在Y軸下半軸上,所以點(diǎn)C(0,-2m),-2m<0,所以m>0,
AO+OB=|a-b|,OC=|-2m|=2m,
所以(AO+OB)2=(a-b)2=(a+b)-4ab=9m2+16m,
12OC+1=24m+1,
∴9m2+16m=24m+1,
9m2-8m-1=0,
m=1或m=-<0,舍去,
∴m=1,
即拋物線(xiàn)的解析式為:y=x2-x-2;

(2)易知:A點(diǎn)坐標(biāo)為(-1,0),B點(diǎn)坐標(biāo)為(4,0),C點(diǎn)坐標(biāo)為(0,-2),
連接AC,BC,AC=,BC=2,AB=5,
∴AC2+BC2=AB2
∴∠ACB=90°,
設(shè)C關(guān)于拋物線(xiàn)對(duì)稱(chēng)軸的對(duì)稱(chēng)點(diǎn)為C′,
那么C′坐標(biāo)為(3,-2),
根據(jù)拋物線(xiàn)的對(duì)稱(chēng)性可知:如果連接AC′、BC′,那么∠AC′B=90°,
因此如果以AB為直徑作圓,那么此圓必過(guò)C,C′,
根據(jù)圓周角定理可知:x軸下方的半圓上任意一點(diǎn)和A、B組成的三角形都是直角三角形,
如果設(shè)P點(diǎn)橫坐標(biāo)為x,那么必有當(dāng)0<x<3時(shí),∠APB為銳角,
當(dāng)-1<x<0或3<x<4時(shí),∠APB為鈍角.
點(diǎn)評(píng):本題考查了一元二次方程根與系數(shù)的關(guān)系,二次函數(shù)解析式的確定等知識(shí)點(diǎn).要注意的是(2)中結(jié)合圓周角的相關(guān)知識(shí)來(lái)理解問(wèn)題可使問(wèn)題簡(jiǎn)化.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖1,已知拋物線(xiàn)交x軸于A、B兩點(diǎn),交y軸于點(diǎn)C(0,2),此拋物線(xiàn)的對(duì)稱(chēng)軸為直線(xiàn)x=2,點(diǎn)A的坐標(biāo)為(1,0).
(1)求B點(diǎn)坐標(biāo)以及△ABC的面積;
(2)求拋物線(xiàn)的解析式;
(3)過(guò)點(diǎn)C作x軸的平行線(xiàn)交此拋物線(xiàn)的對(duì)稱(chēng)軸于點(diǎn)D,你能判斷四邊形ABDC是什么四邊形嗎?并證明你的結(jié)論;
(4)若一個(gè)動(dòng)點(diǎn)P自O(shè)C的中點(diǎn)M出發(fā),先到達(dá)x軸上的某點(diǎn)(設(shè)為點(diǎn)E),再到達(dá)拋物線(xiàn)的對(duì)稱(chēng)軸上某點(diǎn)(設(shè)為點(diǎn)F),最后運(yùn)動(dòng)到點(diǎn)C,求使點(diǎn)P運(yùn)動(dòng)的總路徑(ME+EF+FC)最短的點(diǎn)E、F的坐標(biāo),并求出這個(gè)最短總路徑的長(zhǎng).
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知拋物線(xiàn)交x軸于點(diǎn)A、點(diǎn)B,交y軸于點(diǎn)C,且點(diǎn)A(6,0),點(diǎn)C(0,4),AB=5OB,設(shè)點(diǎn)E(x,y)是拋物線(xiàn)上一動(dòng)點(diǎn),且位于第四象限,四邊形OEAF是以O(shè)A為對(duì)角線(xiàn)的平行四邊形.
(1)求拋物線(xiàn)解析式及頂點(diǎn)坐標(biāo);
(2)求平行四邊形OEAF的面積S與x之間的函數(shù)關(guān)系式,并寫(xiě)出自變量x的取值范圍;
(3)當(dāng)平行四邊形OEAF的面積為24時(shí),請(qǐng)判斷平行四邊形OEAF是否為菱形?
(4)是否存在點(diǎn)E,使平行四邊形OEAF為正方形?若存在,求出點(diǎn)E的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•錦州二模)如圖,已知拋物線(xiàn)交x軸于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),交y軸于點(diǎn)C,已知點(diǎn)B(8,0),tan∠OCB=2,△ABC的面積為8.
(1)求拋物線(xiàn)的表達(dá)式;
(2)若平行于x軸的動(dòng)直線(xiàn)EF從點(diǎn)C 出發(fā),以每秒1個(gè)單位的速度沿y軸正方向平移,且分別交y軸、線(xiàn)段BC于E、F兩點(diǎn),動(dòng)點(diǎn)P同時(shí)從點(diǎn)B出發(fā)在線(xiàn)段BO上以每秒2個(gè)單位的速度運(yùn)動(dòng),連接PF、AF,設(shè)運(yùn)動(dòng)時(shí)間為t秒.△AFP的面積為S,求S與t的函數(shù)表達(dá)式;
(3)在(2)的條件下,是否存在t值,使得以P、B、F為頂點(diǎn)的三角形與△ABC相似?若存在,求出t的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012屆浙江省杭州市上城區(qū)中考二模數(shù)學(xué)試卷(帶解析) 題型:解答題

已知拋物線(xiàn)交y軸于點(diǎn)A,交x軸于點(diǎn)B,C(點(diǎn)B在點(diǎn)C的右側(cè)).過(guò)點(diǎn)A作垂直于y軸的直線(xiàn)l. 在位于直線(xiàn)l下方的拋物線(xiàn)上任取一點(diǎn)P,過(guò)點(diǎn)P作直線(xiàn)PQ平行于y軸交直線(xiàn)l于點(diǎn)Q.連接AP.
(1)寫(xiě)出A,B,C三點(diǎn)的坐標(biāo);
(2)若點(diǎn)P位于拋物線(xiàn)的對(duì)稱(chēng)軸的右側(cè):
①如果以A,P,Q三點(diǎn)構(gòu)成的三角形與△AOC相似,求出點(diǎn)P的坐標(biāo);
②若將△APQ沿AP對(duì)折,點(diǎn)Q的對(duì)應(yīng)點(diǎn)為點(diǎn)M.是否存在點(diǎn)P,使得點(diǎn)M落在x軸上.若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年浙江省杭州市上城區(qū)中考二模數(shù)學(xué)試卷(解析版) 題型:解答題

已知拋物線(xiàn)交y軸于點(diǎn)A,交x軸于點(diǎn)B,C(點(diǎn)B在點(diǎn)C的右側(cè)).過(guò)點(diǎn)A作垂直于y軸的直線(xiàn)l. 在位于直線(xiàn)l下方的拋物線(xiàn)上任取一點(diǎn)P,過(guò)點(diǎn)P作直線(xiàn)PQ平行于y軸交直線(xiàn)l于點(diǎn)Q.連接AP.

(1)寫(xiě)出A,B,C三點(diǎn)的坐標(biāo);

(2)若點(diǎn)P位于拋物線(xiàn)的對(duì)稱(chēng)軸的右側(cè):

①如果以A,P,Q三點(diǎn)構(gòu)成的三角形與△AOC相似,求出點(diǎn)P的坐標(biāo);

②若將△APQ沿AP對(duì)折,點(diǎn)Q的對(duì)應(yīng)點(diǎn)為點(diǎn)M.是否存在點(diǎn)P,使得點(diǎn)M落在x軸上.若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案