(12分)如圖,在Rt△ABC中,∠C=90°,AC=BC=4cm,點D為AC邊上一點,且AD=3cm,動點E從點A出發(fā),以1cm/s的速度沿線段AB向終點B運動,運動時間為x s.作∠DEF=45°,與邊BC相交于點F.設BF長為ycm.
1.(1)當x= ▲ s時,DE⊥AB;
2.(2)求在點E運動過程中,y與x之間的函數(shù)關系式及點F運動路線的長;
3.(3)當△BEF為等腰三角形時,求x的值.
1.(1)
2.(2)∵在△ABC中,∠C=90°,AC=BC=4.
∴∠A=∠B=45°,AB=4,∴∠ADE+∠AED=135°;
又∵∠DEF=45°,∴∠BEF+∠AED=135°,∴∠ADE=∠BEF;
∴△ADE∽△BEF············································································································ 4分
∴=,
∴=,∴y=-x2+x······································································ 5分
∴y=-x2+x=-(x-2)2+
∴當x=2時,y有最大值=·················································································· 6分
∴點F運動路程為cm································································································ 7分
3.(3)這里有三種情況:
①如圖,若EF=BF,則∠B=∠BEF;
又∵△ADE∽△BEF,∴∠A=∠ADE=45°
∴∠AED=90°,∴AE=DE=,
∵動點E的速度為1cm/s ,∴此時x=s;
②如圖,若EF=BE,則∠B=∠EFB;
又∵△ADE∽△BEF,∴∠A=∠AED=45°
∴∠ADE=90°,∴AE=3,
∵動點E的速度為1cm/s
∴此時x=3s;
③如圖,若BF=BE,則∠FEB=∠EFB;
又∵△ADE∽△BEF,∴∠ADE=∠AED
∴AE=AD=3,
∵動點E的速度為1cm/s
∴此時x=3s;
綜上所述,當△BEF為等腰三角形時,x的值為s或3s或3s.
(注:求對一個結論得2分,求對兩個結論得4分,求對三個結論得5分)
解析:略
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
5 |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com