【題目】如圖,△ABC中,AD是高,CE是中線,點(diǎn)G是CE的中點(diǎn),且DG⊥CE,垂足為點(diǎn)G.

(1)求證:DC=BE;

(2)若∠AEC=54°,求∠BCE的度數(shù).

【答案】(1)證明見(jiàn)解析(2)54°

【解析】

(1)由GCE的中點(diǎn),DG⊥CE得到DGCE的垂直平分線,根據(jù)線段垂直平分線的性質(zhì)得到DE=DC,由DERt△ADB的斜邊AB上的中線,根據(jù)直角三角形斜邊上的中線等于斜邊的一半得到DE=BE=AB,即可得到DC=BE;
(2)由DE=DC得到∠DEC=∠BCE,由DE=BE得到∠B=∠EDB,根據(jù)三角形外角性質(zhì)得到∠EDB=∠DEC+∠BCE=2∠BCE,則∠B=2∠BCE,由此根據(jù)外角的性質(zhì)來(lái)求∠BCE的度數(shù).

(1)∵G是CE的中點(diǎn),DG⊥CE,

∴DG是CE的垂直平分線,

∴DE=DC,

∵AD是高,CE是中線,

∴DE是Rt△ADB的斜邊AB上的中線,

∴DE=BE= AB,

∴DC=BE;

(2)∵DE=DC,

∴∠DEC=∠BCE,

∴∠EDB=∠DEC+∠BCE=2∠BCE,

∵DE=BE,

∴∠B=∠EDB,

∴∠B=2∠BCE,

∴∠AEC=3∠BCE=54°,則∠BCE=18°.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知△ABC的頂點(diǎn)A、B、C的坐標(biāo)分別是A(-1,-1)、B(-4,-3)、C(-4,-1).

(1)將△ABC向右平移三個(gè)單位后得到_________;

(2)畫(huà)出△ABC關(guān)于原點(diǎn)O中心對(duì)稱(chēng)的圖形.

(3)將△ABC繞原點(diǎn)A按順時(shí)針?lè)较蛐D(zhuǎn)90°后得到畫(huà)出的坐標(biāo)為_(kāi)________,的坐標(biāo)為_(kāi)________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我們定義:如圖,在中,把繞點(diǎn)按順時(shí)針?lè)较蛐D(zhuǎn)得到,把繞點(diǎn)按逆時(shí)針?lè)较蛐D(zhuǎn)得到,連接,當(dāng)時(shí),我們稱(chēng)旋補(bǔ)三角形上的中線叫做旋補(bǔ)中線,點(diǎn)叫做旋補(bǔ)中心

特例感知:在如圖、如圖中,旋補(bǔ)三角形,旋補(bǔ)中線”.

如圖,當(dāng)為等邊三角形時(shí),的數(shù)量關(guān)系為 ;

如圖,當(dāng),時(shí),則長(zhǎng)為 .

精確作圖:如圖,已知在四邊形內(nèi)部存在點(diǎn),使得旋補(bǔ)三角形(點(diǎn)D的對(duì)應(yīng)點(diǎn)為點(diǎn)A,點(diǎn)C的對(duì)應(yīng)點(diǎn)為點(diǎn)B),請(qǐng)用直尺和圓規(guī)作出點(diǎn)(要求:保留作圖痕跡,不寫(xiě)作法和證明)

猜想論證:在如圖中,當(dāng)為任意三角形時(shí),猜想的數(shù)量關(guān)系,并給予證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在如圖所示的方格圖中,我們稱(chēng)每個(gè)小正方形的頂點(diǎn)為格點(diǎn)”,以格點(diǎn)為頂點(diǎn)的三角形叫做格點(diǎn)三角形”,根據(jù)圖形,回答下列問(wèn)題.

(1)圖中格點(diǎn)三角形A′B′C′是由格點(diǎn)三角形ABC通過(guò)怎樣的平移得到的?

(2)如果以直線a,b為坐標(biāo)軸建立平面直角坐標(biāo)系后點(diǎn)A的坐標(biāo)為(-3,4),請(qǐng)寫(xiě)出格點(diǎn)三角形DEF各頂點(diǎn)的坐標(biāo)并求出三角形DEF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某汽車(chē)專(zhuān)賣(mài)店銷(xiāo)售A,B兩種型號(hào)的新能源汽車(chē).上周售出1輛A型車(chē)和3輛B型車(chē),銷(xiāo)售額為96萬(wàn)元;本周已售2輛A型車(chē)和1輛B型車(chē),銷(xiāo)售額為62萬(wàn)元.

(1)求每輛A型車(chē)和B型車(chē)的售價(jià)各多少萬(wàn)元.

(2)甲公司擬向該店購(gòu)買(mǎi)A,B兩種型號(hào)的新能源汽車(chē)共6,購(gòu)車(chē)費(fèi)不少于130萬(wàn)元,且不超過(guò)140萬(wàn)元. 則有哪幾種購(gòu)車(chē)方案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AE平分∠CADAEBC,O為△ABC內(nèi)一點(diǎn),∠OBC=∠OCB.求證:∠ABO=∠ACO.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD中,AC平分∠BAD,過(guò)點(diǎn)C作CE⊥AB于點(diǎn)E,且CD=CB,∠ABC+∠ADC=180°.求證:AE=(AB+AD).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某班從三名男生(含小強(qiáng))和五名女生中選四名學(xué)生參加學(xué)校舉行的中華古詩(shī)文朗誦大賽,規(guī)定女生選n名.

1)當(dāng)n為何值時(shí),男生小強(qiáng)參加是確定事件?

2)當(dāng)n為何值時(shí),男生小強(qiáng)參加是隨機(jī)事件?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校計(jì)劃組織師生參加哈爾濱冰雪節(jié),感受冰雪藝術(shù)的魅力.出租公司現(xiàn)有甲、乙兩種型號(hào)的客車(chē)可供租用,且每輛乙型客車(chē)的租金比每輛甲型客車(chē)少60元.若該校租用3輛甲種客車(chē),4輛乙種客車(chē),則需付租金1720元.

(1)該出租公司每輛甲、乙兩型客車(chē)的租金各為多少元?

(2)若學(xué)校計(jì)劃租用6輛客車(chē),租車(chē)的總租金不超過(guò)1560元,那么最多租用甲型客車(chē)多少輛?

查看答案和解析>>

同步練習(xí)冊(cè)答案