【題目】如圖所示,在中,,、分別是、的垂直平分線,點、上,則_______

【答案】

【解析】

根據(jù)三角形的內(nèi)角和定理求出∠B+C=74°,根據(jù)線段垂直平分線的性質(zhì)得出AE=BE,AN=CN,根據(jù)等腰三角形的性質(zhì)得出∠BAE=B,∠C=CAN,求出∠BAE+CAN=B+C=74°,即可求出答案.

解:∵△ABC中,∠BAC=106°,
∴∠B+C=180°-BAC=180°-106°=74°,
EF、MN分別是ABAC的中垂線,
AE=BEAN=CN;

∴∠B=BAE,∠C=CAN,
即∠B+C=BAE+CAN=74°,
∴∠EAN=BAC-(∠BAE+CAN=106°-74°=32°.
故答案為32°.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖正方形ABCD,AB=3cm,B為圓心,1cm為半徑畫圓,PB上一個動點,連接AP,并將AP繞點A逆時針旋轉(zhuǎn)90°至AP',連接BP',在點P移動的過程中,BP'長度的取值范圍是_____cm

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在推進城鄉(xiāng)義務教育均衡發(fā)展工作中,我市某區(qū)政府通過公開招標的方式為轄區(qū)內(nèi)全部鄉(xiāng)鎮(zhèn)中學采購了某型號的學生用電腦和教師用筆記本電腦,其中,A鄉(xiāng)鎮(zhèn)中學更新學生用電腦110臺和教師用筆記本電腦32臺,共花費30.5萬元;B鄉(xiāng)鎮(zhèn)中學更新學生電腦55臺和教師用筆記本電腦24臺,共花費17.65萬元.

(1)求該型號的學生用電腦和教師用筆記本電腦單價分別是多少萬元?

(2)經(jīng)統(tǒng)計,全部鄉(xiāng)鎮(zhèn)中學需要購進的教師用筆記本電腦臺數(shù)比購進的學生用電腦臺數(shù)的90臺,在兩種電腦的總費用不超過預算438萬元的情況下,至多能購進的學生用電腦和教師用筆記本電腦各多少臺?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=mx2-2mx-3m(m>0)與x軸交于A、B兩點,與y軸交于點C,點M為拋物線的頂點,且OC=OB.

(1)求拋物線的解析式.

(2)若拋物線上有一點P,連PC交線段BMQ點,且SBPQ=SCMQ,求P點的坐標.

(3)把拋物線沿x軸正半軸平移n個單位,使平移后的拋物線交直線BCE、F兩點,且E、F關于點B對稱,求n的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若拋物線L:y=ax2+bx+ca,b,c是常數(shù),abc≠0與直線l都經(jīng)過y軸上的一點P,且拋物線L的頂點Q在直線l上,則稱此直線l與該拋物線L具有“一帶一路”關系.此時,直線l叫做拋物線L的“帶線”,拋物線L叫做直線l的“路線”.

1若直線y=mx+1與拋物線y=x2﹣2x+n具有“一帶一路”關系,求m,n的值;

2若某“路線”L的頂點在反比例函數(shù)y=的圖象上,它的“帶線”l的解析式為y=2x﹣4,求此“路線”L的解析式;

3當常數(shù)k滿足≤k≤2時,求拋物線L:y=ax2+3k2﹣2k+1x+k的“帶線”l與x軸,y軸所圍成的三角形面積的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,∠ACB=90°,∠A=30°,將△ABCC點按逆時針方向旋轉(zhuǎn)α角(0°<α<90°)得到△DEC,設CDABF,連接AD,△ADF是等腰三角形旋轉(zhuǎn)角α度數(shù)為( 。

A. 20° B. 40° C. 20°或40° D. 60°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,一次函數(shù)y=﹣x+b的圖象與反比例函數(shù)yk0)圖象交于AB兩點,與y軸交于點C,與x軸交于點D,其中A點坐標為(﹣2,3).

1)求一次函數(shù)和反比例函數(shù)解析式.

2)若將點C沿y軸向下平移4個單位長度至點F,連接AF、BF,求△ABF的面積.

3)根據(jù)圖象,直接寫出不等式﹣x+b的解集.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】“C919”大型客機首飛成功,激發(fā)了同學們對航空科技的興趣,如圖是某校航模興趣小組獲得的一張數(shù)據(jù)不完整的航模飛機機翼圖紙,圖中ABCD,AMBNED,AEDE,請根據(jù)圖中數(shù)據(jù),求出線段BECD的長.(sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,結(jié)果保留小數(shù)點后一位)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知AB,BC,CD分別與⊙O相切于E,F(xiàn),G三點,且ABCD,連接OB,OC.

(1)如圖1,求∠BOC的度數(shù);

(2)如圖2,延長CO交⊙O于點M,過點MMNOBCD于點N,當OB=6,OC=8時,求⊙O的半徑及MN的長.

查看答案和解析>>

同步練習冊答案