【題目】如圖,正方形ABCD的頂點A在x軸的正半軸上,頂點C在y軸的正半軸上,點B在雙曲線(x<0)上,點D在雙曲線(x>0)上,點D的坐標是 (3,3)
(1)求k的值;
(2)求點A和點C的坐標.
【答案】(1)k=9,(2)A(1,0), C(0,5).
【解析】
(1)根據(jù)反比例函數(shù)過點D,將坐標代入即可求值,(2)利用全等三角形的性質(zhì),計算AM,AN,CH的長即可解題.
解:將點D代入中,
解得:k=9,
(2)過點B作BN⊥x軸于N, 過點D作DM⊥x軸于M,
∵四邊形ABCD是正方形,
∴∠BAD=90°,AB=AD,
∵∠BAN+∠ABN=90°,
∴∠BAN=∠ADM,
∴△ABN≌△DAM(AAS),
∴DM=AN=3,
設A(a,0),
∴N(a-3,0),
∵B在 上,
∴BN==AM,
∵OM=a=3,整理得:a2-6a+5=0,
解得:a=1或a=5(舍去),
經(jīng)檢驗,a=1是原方程的根,
∴A(1,0),
過點D作DH⊥Y軸于H,
同理可證明△DHC≌△DMA,
∴CH=AM=2,
∴C(0,5),
綜上, A(1,0), C(0,5).
科目:初中數(shù)學 來源: 題型:
【題目】如圖,九(1)班課外活動小組利用標桿測量學校旗桿的高度,已知標桿高度CD=3m,標桿與旗桿的水平距離BD=15m,人的眼睛與地面的高度EF=1.6m,人與標桿CD的水平距離DF=2m,人的眼睛E、標桿頂點C和旗桿頂點A在同一直線,求旗桿AB的高度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖示,正方形ABCD的頂點A在等腰直角三角形DEF的斜邊EF上,EF與BC相交于點G,連接CF.
①求證:△DAE≌△DCF;
②求證:△ABG∽△CFG.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△AOB中,∠AOB=90°,點A的坐標為(4,2),BO=4,反比例函數(shù)y=的圖象經(jīng)過點B,則k的值為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,過點C(1,2)分別作x軸、y軸的平行線,交直線y=﹣x+8于A、B兩點,若反比例函數(shù)y=(x>0)的圖象與△ABC有公共點,則k的取值范圍是( )
A. 2≤k≤12 B. 2≤k≤7 C. 7≤k≤12 D. 2≤k≤16
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將一張正方形紙片ABCD對折,使CD與AB重合,得到折痕MN后展開,E為CN上一點,將△CDE沿DE所在的直線折疊,使得點C落在折痕MN上的點F處,連接AF,BF,BD.則下列結(jié)論中:①△ADF是等邊三角形;②tan∠EBF=2-;③S△ADF=S正方形ABCD;④BF2=DF·EF.其中正確的是( )
A. ①②③ B. ①②④ C. ①③④ D. ②③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】自2016年國慶后,許多高校均投放了使用手機就可隨用的共享單車.某運營商為提高其經(jīng)營的A品牌共享單車的市場占有率,準備對收費作如下調(diào)整:一天中,同一個人第一次使用的車費按0.5元收取,每增加一次,當次車費就比上次車費減少0.1元,第6次開始,當次用車免費.具體收費標準如下:
使用次數(shù) | 0 | 1 | 2 | 3 | 4 | 5(含5次以上) |
累計車費 | 0 | 0.5 | 0.9 | 1.5 |
同時,就此收費方案隨機調(diào)查了某高校100名師生在一天中使用A品牌共享單車的意愿,得到如下數(shù)據(jù):
使用次數(shù) | 0 | 1 | 2 | 3 | 4 | 5 |
人數(shù) | 5 | 15 | 10 | 30 | 25 | 15 |
(Ⅰ)寫出的值;
(Ⅱ)已知該校有5000名師生,且A品牌共享單車投放該校一天的費用為5800元.試估計:收費調(diào)整后,此運營商在該校投放A品牌共享單車能否獲利? 說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:直角梯形OABC中,CB∥OA,對角線OB和AC交于點D,OC=2,CB=2,OA=4,點P為對角線CA上的一點,過點P作QH⊥OA于H,交CB的延長線于點Q,連接BP,如果△BPQ和△PHA相似,則點P的坐標為______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,∠CAB=90°,AD⊥BC于點D,點E為AB的中點,EC與AD交于點G,點F在BC上.
(1)如圖1,AC:AB=1:2,EF⊥CB,求證:EF=CD.
(2)如圖2,AC:AB=1:,EF⊥CE,求EF:EG的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com