如圖,拋物線y=x2+x-4與y軸交于點(diǎn)AE(0,b)為y軸上一動(dòng)點(diǎn),過點(diǎn)E的直線y=x+b與拋物線交于點(diǎn)B、C

(1)求點(diǎn)A的坐標(biāo);

(2)當(dāng)b=0時(shí)(如圖),△ABE與△ACE的面積大小關(guān)系如何?當(dāng)b>-4時(shí),上述關(guān)系還成立嗎,為什么?

(3)是否存在這樣的b,使得△BOC是以BC為斜邊的直角三角形,若存在,求出b;若不存在,說明理由.

答案:
解析:

  (1)將x=0,代入拋物線解析式,得點(diǎn)A的坐標(biāo)為(0,-4)  2分

  (2)當(dāng)b=0時(shí),直線為,由解得,

  所以B、C的坐標(biāo)分別為(-2,-2),(2,2)

  

  所以(利用同底等高說明面積相等亦可)  4分

  當(dāng)時(shí),仍有成立.理由如下

  由,解得,

  所以B、C的坐標(biāo)分別為(-,-b),(b),

  作軸,軸,垂足分別為FG,則

  而是同底的兩個(gè)三角形,

  所以  6分

  (3)存在這樣的b.

  因?yàn)?IMG style="vertical-align:middle" SRC="http://thumb.zyjl.cn/pic7/pages/30A2/0938/0026/023f399b448a6dae98e6ad52f66085b1/C/Image120.gif" width=320 HEIGHT=20>

  所以

  所以,即EBC的中點(diǎn)

  所以當(dāng)OECE時(shí),為直角三角形  8分

  因?yàn)?IMG style="vertical-align:middle" SRC="http://thumb.zyjl.cn/pic7/pages/30A2/0938/0026/023f399b448a6dae98e6ad52f66085b1/C/Image124.gif" width=223 HEIGHT=24>

  所以,而

  所以,解得,

  所以當(dāng)b=4或-2時(shí),ΔOBC為直角三角形  10分


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:江蘇中考真題 題型:解答題

如圖,拋物線y=-x2+bx+c與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)D為拋物線的頂點(diǎn),點(diǎn)E在拋物線上,點(diǎn)F在x軸上,四邊形OCEF為矩形,且OF=2,EF=3.
(1)求拋物線所對應(yīng)的函數(shù)解析式;
(2)求△ABD的面積;
(3)將△AOC繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)90°,點(diǎn)A對應(yīng)點(diǎn)為點(diǎn)G,問點(diǎn)G是否在該拋物線上?請說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年浙江省金華市六校聯(lián)誼中考模擬數(shù)學(xué)試卷(帶解析) 題型:填空題

如圖,拋物線y=x2x與x軸交于O,A兩點(diǎn). 半徑為1的動(dòng)圓(⊙P),圓心從O點(diǎn)出發(fā)沿拋物線向靠近點(diǎn)A的方向移動(dòng);半徑為2的動(dòng)圓(⊙Q),圓心從A點(diǎn)出發(fā)沿拋物線向靠近點(diǎn)O的方向移動(dòng). 兩圓同時(shí)出發(fā),且移動(dòng)速度相等,當(dāng)運(yùn)動(dòng)到P,Q兩點(diǎn)重合時(shí)同時(shí)停止運(yùn)動(dòng). 設(shè)點(diǎn)P的橫坐標(biāo)為t .

(1)點(diǎn)Q的橫坐標(biāo)是         (用含t的代數(shù)式表示);
(2)若⊙P與⊙Q 相離,則t的取值范圍是          .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年浙江省金華市六校聯(lián)誼中考模擬數(shù)學(xué)試卷(解析版) 題型:填空題

如圖,拋物線y=x2x與x軸交于O,A兩點(diǎn). 半徑為1的動(dòng)圓(⊙P),圓心從O點(diǎn)出發(fā)沿拋物線向靠近點(diǎn)A的方向移動(dòng);半徑為2的動(dòng)圓(⊙Q),圓心從A點(diǎn)出發(fā)沿拋物線向靠近點(diǎn)O的方向移動(dòng). 兩圓同時(shí)出發(fā),且移動(dòng)速度相等,當(dāng)運(yùn)動(dòng)到P,Q兩點(diǎn)重合時(shí)同時(shí)停止運(yùn)動(dòng). 設(shè)點(diǎn)P的橫坐標(biāo)為t .

(1)點(diǎn)Q的橫坐標(biāo)是         (用含t的代數(shù)式表示);

(2)若⊙P與⊙Q 相離,則t的取值范圍是          .

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇省儀征市九年級上學(xué)期末考試數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,拋物線y=x2+bx+c與x軸交于點(diǎn)A、B(點(diǎn)A在點(diǎn)B左側(cè)),與y軸交于點(diǎn)C(0,-3),且拋物線的對稱軸是直線x=1.

(1)求b的值;

(2)點(diǎn)E是y軸上一動(dòng)點(diǎn),CE的垂直平分線交y軸于點(diǎn)F,交拋物線于P、Q兩點(diǎn),且點(diǎn)P在第三象限.當(dāng)線段PQ = AB時(shí),求點(diǎn)E的坐標(biāo);

(3)若點(diǎn)M在射線CA上運(yùn)動(dòng),過點(diǎn)M作MN⊥y軸,垂足為N,以M為圓心,MN為半徑作⊙M,當(dāng)⊙M與x軸相切時(shí),求⊙M的半徑.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012屆江蘇省蘇州工業(yè)園區(qū)九年級上學(xué)期期中測試數(shù)學(xué)卷 題型:選擇題

如圖,拋物線y=x2+1與雙曲線y=的交點(diǎn)A的橫坐標(biāo)是1,則關(guān)于x的不等式+x2+1 < 0的解集是( ▲ )

A.x>1            B.x<−1            C.0<x<1          D.−1<x<0

 

查看答案和解析>>

同步練習(xí)冊答案