如圖,直線與軸、軸分別交于A、B兩點(diǎn),把△AOB繞點(diǎn)A順時(shí)針旋轉(zhuǎn)60°后得到△AO′B′,則點(diǎn)B'的坐標(biāo)是( ).
A.(4,) B.(,4) C.(,3) D.(,)
B
【解析】
試題分析:先求得直線與軸、軸的交點(diǎn),即可得到AO、BO的長,再根據(jù)勾股定理求得AB的長,最后根據(jù)旋轉(zhuǎn)的性質(zhì)求解即可.
在中,當(dāng)時(shí),,當(dāng)時(shí),
所以∠OAB=30°,
因?yàn)榘选鰽OB繞點(diǎn)A順時(shí)針旋轉(zhuǎn)60°后得到△AO′B′
所以點(diǎn)B'的坐標(biāo)是(,4)
故選B.
考點(diǎn):坐標(biāo)軸上的點(diǎn)的坐標(biāo),勾股定理,旋轉(zhuǎn)的性質(zhì)
點(diǎn)評:解題關(guān)鍵是熟記x軸上的點(diǎn)的縱坐標(biāo)為0,y軸上的點(diǎn)的橫坐標(biāo)為0.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2013屆浙江臨安於潛第一初級中學(xué)九年級上期末綜合考試數(shù)學(xué)試卷(一)(帶解析) 題型:解答題
(本題12分)
如圖,直線與軸、軸分別交于A、B兩點(diǎn),動(dòng)點(diǎn)P從A點(diǎn)開始在線段AO上以每秒3個(gè)長度單位的速度向原點(diǎn)O運(yùn)動(dòng). 動(dòng)直線EF從軸開始以每秒1個(gè)長度單位的速度向上平行移動(dòng)(即EF∥軸),并且分別與軸、線段AB交于E、F點(diǎn).連結(jié)FP,設(shè)動(dòng)點(diǎn)P與動(dòng)直線EF同時(shí)出發(fā),運(yùn)動(dòng)時(shí)間為t秒.
(1)當(dāng)t=1秒時(shí),求梯形OPFE的面積;
(2)t為何值時(shí),梯形OPFE的面積最大,最大面積是多少?
(3)設(shè)t的值分別取t1、t2時(shí)(t1≠t2),所對應(yīng)的三角形分別為△AF1P1和△AF2P2.試判斷這兩個(gè)三角形是否相似,請證明你的判斷.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2012-2013學(xué)年浙江臨安於潛第一初級中學(xué)九年級上期末綜合考試數(shù)學(xué)試卷(一)(解析版) 題型:解答題
(本題12分)
如圖,直線與軸、軸分別交于A、B兩點(diǎn),動(dòng)點(diǎn)P從A點(diǎn)開始在線段AO上以每秒3個(gè)長度單位的速度向原點(diǎn)O運(yùn)動(dòng). 動(dòng)直線EF從軸開始以每秒1個(gè)長度單位的速度向上平行移動(dòng)(即EF∥軸),并且分別與軸、線段AB交于E、F點(diǎn).連結(jié)FP,設(shè)動(dòng)點(diǎn)P與動(dòng)直線EF同時(shí)出發(fā),運(yùn)動(dòng)時(shí)間為t秒.
(1)當(dāng)t=1秒時(shí),求梯形OPFE的面積;
(2)t為何值時(shí),梯形OPFE的面積最大,最大面積是多少?
(3)設(shè)t的值分別取t1、t2時(shí)(t1≠t2),所對應(yīng)的三角形分別為△AF1P1和△AF2P2.試判斷這兩個(gè)三角形是否相似,請證明你的判斷.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2011年初中畢業(yè)升學(xué)考試(福建漳州卷)數(shù)學(xué) 題型:解答題
(11·漳州)(滿分14分)如圖1,拋物線y=mx2-11mx+24m (m<0) 與x軸交于B、C兩點(diǎn)(點(diǎn)B在點(diǎn)C的左側(cè)),拋物線另有一點(diǎn)A在第一象限內(nèi),且∠BAC=90°.
(1)填空:OB=_ ▲ ,OC=_ ▲ ;
(2)連接OA,將△OAC沿x軸翻折后得△ODC,當(dāng)四邊形OACD是菱形時(shí),求此時(shí)拋物線的解析式;
(3)如圖2,設(shè)垂直于x軸的直線l:x=n與(2)中所求的拋物線交于點(diǎn)M,與CD交于點(diǎn)N,若直線l 沿x軸方向左右平移,且交點(diǎn)M始終位于拋物線上A、C兩點(diǎn)之間時(shí),試探究:當(dāng)n為何值時(shí),四邊形AMCN的面積取得最大值,并求出這個(gè)最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com