已知⊙O1、⊙O2的半徑分別是2和1,若兩圓相交,則圓心距O1O2可以是( 。
分析:本題直接告訴了兩圓的半徑及兩圓相交,求圓心距范圍內(nèi)的可能取值,根據(jù)數(shù)量關系與兩圓位置關系的對應情況便可直接得出答案.相交,則R-r<P<R+r.(P表示圓心距,R,r分別表示兩圓的半徑).
解答:解:兩圓半徑差為1,半徑和為3,
兩圓相交時,圓心距大于兩圓半徑差,且小于兩圓半徑和,
所以,1<O1O2<3.符合條件的數(shù)只有A.
故選A.
點評:本題考查了由數(shù)量關系及兩圓位置關系確定圓心距范圍內(nèi)的數(shù)的方法.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

2、已知⊙O1和⊙O2的半徑長分別是方程x2-6x+8=0的兩根,且O1O2=5,則⊙O1和⊙O2的位置關系為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

6、已知⊙O1與⊙O2的半徑分別為5cm和3cm,圓心距O1O2=2cm,則⊙O1與⊙O2的位置關系為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

3、已知⊙O1與⊙O2的直徑分別是4cm和6cm,O1O2=5cm,則兩圓的位置關系是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2008•攀枝花)已知⊙O1和⊙O2的半徑分別是方程x2-5x+4=0的兩根,O1O2=3,則兩圓位置關系為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知⊙O1與⊙O2的半徑分別為5和3,且⊙O1與⊙O2相切,則O1O2的長為( 。

查看答案和解析>>

同步練習冊答案