兩個大小不同的等腰直角三角形三角板如圖1所示放置,圖2是由它抽象出的幾何圖形,在同一條直線上,連結(jié).(1)請找出圖2中的全等三角形,并給予證明(說明:結(jié)論中不得含有未標識的字母);

(2)證明:

 

【答案】

(1)△ADC≌△AEB  …………………………1分

    證明:由已知得:

AB=AC,AD=AE,∠BAC=∠DAE=90°

∴∠BAC+∠CAE=∠DAE+∠CAE    ……2分

即∠BAE=∠CAD

∴△ADC≌△AEB    ………………………3分

     (2)∵△ADC≌△AEB   ∴∠ADC=∠AEB  …4分

          ∵∠ADC+∠CDE+∠AED=90°

          ∴∠AEB+∠CDE+∠AED=90°

          ∴∠DCE=90°  即DC⊥BE   …………6分

【解析】(1)可以找出△BAE≌△CAD,條件是AB=AC,DA=EA,∠BAE=∠DAC=90°+∠CAE.

(2)由①可得出∠DCA=∠ABC=45°,則∠BCD=90°,所以DC⊥BE.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

25、兩個大小不同的等腰直角三角形三角板如圖①所示放置,圖②是由它抽象出的幾何圖形,B,C,E在同一條直線上,連接CD.請找出圖②中的全等三角形,并說明理由(說明:結(jié)論中不得含有未標識的字母).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

21、兩個大小不同的等腰直角三角形三角板如圖1所示放置,圖2是由它抽象出的幾何圖形,B,C,E在同一條直線上,連接DC.求證:
(1)△ABE≌△ACD;
(2)DC⊥BE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

17、如圖每個小方格邊長為1個單位,請你以AB(長為2個單位)為一邊畫出兩個大小不同的等腰直角三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1)解不等式組,并把解集在數(shù)軸上表示出來.
x+3(x-2)≤2
1+3x
2
>x-1

(2)兩個大小不同的等腰直角三角板按如圖1所示放置,圖2是由它抽象出的幾何圖形,B,C,E在同一條直線上,連接DC.請找出圖2中的全等三角形,并給予證明(說明:結(jié)論中不得含有未標識的字母).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

兩個大小不同的等腰直角三角板,如圖1所示:

(1)若兩個等腰直角三角板如圖2放置,求證:EC⊥BD.
(2)若兩個等腰直角三角板如圖3放置,使B、C、D在同一條直線上,連接EC交AD于點M,你認為EC與BD是否仍然垂直?請說明理由.

查看答案和解析>>

同步練習(xí)冊答案