精英家教網(wǎng)如圖,在直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn).已知反比例函數(shù)y=
k
x
(k>0)的圖象經(jīng)過(guò)點(diǎn)A(2,m),過(guò)點(diǎn)A作AB⊥x軸于點(diǎn)B,且△AOB的面積為
1
2

(1)求k和m的值;
(2)點(diǎn)C(x,y)在反比例函數(shù)y=
k
x
的圖象上,求當(dāng)1≤x≤3時(shí)函數(shù)值y的取值范圍;
(3)過(guò)原點(diǎn)O的直線l與反比例函數(shù)y=
k
x
的圖象交于P、Q兩點(diǎn),試根據(jù)圖象直接寫(xiě)出線段PQ長(zhǎng)度的最小值.
分析:(1)根據(jù)三角形的面積公式先得到m的值,然后把點(diǎn)A的坐標(biāo)代入y=
k
x
,可求出k的值;
(2)根據(jù)反比例函數(shù)得性質(zhì)求解;
(3)P,Q關(guān)于原點(diǎn)對(duì)稱,則PQ=2OP,設(shè)P(a,
1
a
),根據(jù)勾股定理得到OP=
a2+(
1
a
)
2
=
(a-
1
a
)
2
+2
,從而得到OP最小值為
2
,于是可得到線段PQ長(zhǎng)度的最小值.
解答:精英家教網(wǎng)解:(1)∵A(2,m),
∴OB=2,AB=m,
∴S△AOB=
1
2
•OB•AB=
1
2
×2×m=
1
2
,
∴m=
1
2
;
∴點(diǎn)A的坐標(biāo)為(2,
1
2
),
把A(2,
1
2
)代入y=
k
x
,得
1
2
=
k
2

∴k=1;
(2)∵當(dāng)x=1時(shí),y=1;當(dāng)x=3時(shí),y=
1
3
,
又∵反比例函數(shù)y=
1
x
,在x>0時(shí),y隨x的增大而減小,
∴當(dāng)1≤x≤3時(shí),y的取值范圍為
1
3
≤y≤1;
(3)由圖象可得:P,Q關(guān)于原點(diǎn)對(duì)稱,
∴PQ=2OP,
反比例函數(shù)解析式為y=
1
x
,設(shè)P(a,
1
a
),
∴OP=
a2+(
1
a
)
2
=
(a-
1
a
)
2
+2

∴OP最小值為
2
,
∴線段PQ長(zhǎng)度的最小值為2
2
點(diǎn)評(píng):本題考查了點(diǎn)在圖象上,點(diǎn)的橫縱坐標(biāo)滿足圖象的解析式;也考查了三角形的面積公式以及代數(shù)式的變形能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

18、如圖,在直角坐標(biāo)系中,已知點(diǎn)A(-3,0),B(0,4),對(duì)△OAB連續(xù)作旋轉(zhuǎn)變換,依次得到三角形①、②、③、④…,則三角形⑦的直角頂點(diǎn)的坐標(biāo)為
(24,0)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在直角坐標(biāo)系中,點(diǎn)P的坐標(biāo)為(3,4),將OP繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°得到線段OP′.
(1)在圖中畫(huà)出線段OP′;
(2)求P′的坐標(biāo)和
PP′
的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在直角坐標(biāo)系中,O為原點(diǎn).反比例函數(shù)y=
6
x
的圖象經(jīng)過(guò)第一象限的點(diǎn)A,點(diǎn)A的縱坐標(biāo)是橫坐標(biāo)的
3
2
倍.
(1)求點(diǎn)A的坐標(biāo);
(2)如果經(jīng)過(guò)點(diǎn)A的一次函數(shù)圖象與x軸的負(fù)半軸交于點(diǎn)B,AC⊥x軸于點(diǎn)C,若△ABC的面積為9,求這個(gè)一次函數(shù)的解析式.
(3)點(diǎn)D在反比例函數(shù)y=
6
x
的圖象上,且點(diǎn)D在直線AC的右側(cè),作DE⊥x軸于點(diǎn)E,當(dāng)△ABC與△CDE相似時(shí),求點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別為A(-6,0),B(-4,6),C(0,2).畫(huà)出△ABC的兩個(gè)位似圖形△A1B1C1,△A2B2C2,同時(shí)滿足下列兩個(gè)條件:
(1)以原點(diǎn)O為位似中心;
(2)△A1B1C1,△A2B2C2與△ABC的面積比都是1:4.(作出圖形,保留痕跡,標(biāo)上相應(yīng)字母)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在直角坐標(biāo)系中,已知點(diǎn)A(-4,0),B(0,3),對(duì)△OAB連續(xù)作旋轉(zhuǎn)變換,依次得到三角形(1),三角形(2),三角形(3),三角形(4),…,

(1)△AOB的面積是
6
6
;
(2)三角形(2013)的直角頂點(diǎn)的坐標(biāo)是
(8052,0)
(8052,0)

查看答案和解析>>

同步練習(xí)冊(cè)答案