【題目】解方程

1

2x22x40

3

4)(x+3)(x1)=12

【答案】1x1=0x2=;(2x1=+1x2= -+1;(3x1=1,x2= -1;(4) x1= -5,x2=3

【解析】

1)先分解因式,即可得出兩個一元一次方程,求出方程的解即可;
2)用公式法解方程即可;
3)兩邊開方,即可得出兩個一元一次方程,求出方程的解即可;
4)整理后分解因式,即可得出兩個一元一次方程,求出方程的解即可.

解:(15x23x0
x5x3)=0
x05x30,
解得:x10,x2;
2x22x40,

a=1,b=2,c=4,
b24ac4+16200,
x,
解得:x1,x2
3)(3x22=(2x32,
開方得:3x2±2x3),
解得:x11,x21;
4)(x3)(x1)=12,
整理得:x22x150,
∴(x5)(x3)=0
x50x30,
解得:x15x23

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】已知m,n是實數(shù),定義運算“*”為:m*nmn+n

1)分別求4*(﹣2)與4*的值;

2)若關(guān)于x的方程x*a*x)=﹣有兩個相等的實數(shù)根,求實數(shù)a的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知△ABCCEABEBFACF

1)求證:△AFB∽△AEC;

2)求證:△AEFA∽△ABC;

3)若∠A=60°時,求△AFE與△ABC面積之比.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,M為直線lxa上一點,N是直線l外一點,且直線MNx軸不平行,若MN為某個矩形的對角線,且該矩形的邊均與某條坐標軸垂直,則稱該矩形為直線l伴隨矩形.如圖為直線l伴隨矩形的示意圖.

1)已知點A在直線lx2上,點B的坐標為(3,﹣2

①若點A的縱坐標為0,則以AB為對角線的直線l伴隨矩形的面積是 

②若以AB為對角線的直線l伴隨矩形是正方形,求直線AB的表達;

2)點P在直線lxm上,且點P的縱坐標為4,若在以點(2,1),(﹣2,1),(﹣2,﹣1),(2,﹣1)為頂點的四邊形上存在一點Q,使得以PQ為對角線的直線l伴隨矩形為正方形,直接寫出m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,⊙O的直徑PD8,點E是⊙O上一點,點A的中點,連接PA,過點A作直線lPE,垂足為點B,PB=6,直徑PD的延長線交直線l于點F

1)求證:直線l是⊙O的切線;

2)求線段PA的長;

3)求陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠C=90°,以AC為直徑作⊙O,交ABD,過點OOEAB,交BCE.

(1)求證:ED為⊙O的切線;

(2)如果⊙O的半徑為,ED=2,延長EO交⊙OF,連接DF、AF,求ADF的面積.

【答案】(1)證明見解析;(2)

【解析】試題分析:(1)首先連接OD,由OEAB,根據(jù)平行線與等腰三角形的性質(zhì),易證得 即可得,則可證得的切線;
(2)連接CD,根據(jù)直徑所對的圓周角是直角,即可得 利用勾股定理即可求得的長,又由OEAB,證得根據(jù)相似三角形的對應(yīng)邊成比例,即可求得的長,然后利用三角函數(shù)的知識,求得的長,然后利用SADF=S梯形ABEF-S梯形DBEF求得答案.

試題解析:(1)證明:連接OD,

OEAB

∴∠COE=CAD,EOD=ODA,

OA=OD,

∴∠OAD=ODA,

∴∠COE=DOE,

在△COE和△DOE中,

∴△COE≌△DOE(SAS),

EDOD,

ED的切線;

(2)連接CD,交OEM

RtODE中,

OD=32,DE=2,

OEAB

∴△COE∽△CAB,

AB=5,

AC是直徑,

EFAB

SADF=S梯形ABEFS梯形DBEF

∴△ADF的面積為

型】解答
結(jié)束】
25

【題目】【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個公共點M(1,0),且a<b.

(1)求ba的關(guān)系式和拋物線的頂點D坐標(用a的代數(shù)式表示);

(2)直線與拋物線的另外一個交點記為N,求DMN的面積與a的關(guān)系式;

(3)a=﹣1時,直線y=﹣2x與拋物線在第二象限交于點G,點G、H關(guān)于原點對稱,現(xiàn)將線段GH沿y軸向上平移t個單位(t>0),若線段GH與拋物線有兩個不同的公共點,試求t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線經(jīng)過坐標原點O,與x軸交于另一點A,頂點為B.求:

1)拋物線的解析式;

2AOB的面積;

3)要使二次函數(shù)的圖象過點(10,0),應(yīng)把圖象沿x軸向右平移 個單位

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△OAB中,∠ABO90°,點A位于第一象限,點O為坐標原點,點Bx軸正半軸上,若雙曲線yx0)與△OAB的邊AOAB分別交于點C、D,點CAO的中點,連接ODCD.若SOBD3,則SOCD為( 。

A.3B.4C.D.6

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知ABC,以AC為直徑的⊙OAB于點D,點E為弧AD的中點,連接CEAB于點F,且BF=BC

1)求證:BC是⊙O的切線;

2)若⊙O的半徑為2,=,求CE的長.

查看答案和解析>>

同步練習冊答案