一元二次方程x2-2x-m=0,用配方法解該方程,配方后的方程為( )
A.(x-1)2=m2+1
B.(x-1)2=m-1
C.(x-1)2=1-m
D.(x-1)2=m+1
【答案】分析:此題考查了配方法解一元二次方程,解題時要注意解題步驟的準(zhǔn)確使用.
解答:解:∵x2-2x-m=0,
∴x2-2x=m,
∴x2-2x+1=m+1,
∴(x-1)2=m+1.
故選D.
點評:配方法的一般步驟:
(1)把常數(shù)項移到等號的右邊;
(2)把二次項的系數(shù)化為1;
(3)等式兩邊同時加上一次項系數(shù)一半的平方.
選擇用配方法解一元二次方程時,最好使方程的二次項的系數(shù)為1,一次項的系數(shù)是2的倍數(shù).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

從甲、乙兩題中選做一題,如果兩題都做,只以甲題計分.
甲題:若關(guān)于x的一元二次方程x2-2(2-k)x+k2+12=0有實數(shù)根α、β.
(1)求實數(shù)k的取值范圍;
(2)設(shè)t=
α+βk
,求t的最小值.
乙題:如圖,在△ABC中,點O是AC邊上的一個動點,過點O作直線MN∥BC,設(shè)MN交∠BCA的角平分線于點E,交∠BCA的外角平分線于點F.當(dāng)點O運動到何處時,四邊形AECF是矩形?并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知x=1是一元二次方程x2+mx+n=0的一個根,則m2+2mn+n2的值為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知關(guān)于x的一元二次方程x2+(2m-1)x+m2=0有兩個實數(shù)根x1和x2
(1)求實數(shù)m的取值范圍;
(2)當(dāng)x12+x22=7時,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

一元二次方程x2-3x+1=0的兩根為x1、x2,則x1+x2-x1•x2=
2
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•常德)若一元二次方程x2+2x+m=0有實數(shù)解,則m的取值范圍是( 。

查看答案和解析>>

同步練習(xí)冊答案