如圖,點(diǎn)G是△ABC的重心,GD∥BC,則SADG:S△ABC等于( )

A.2:3
B.4:9
C.2:9
D.無(wú)法確定
【答案】分析:根據(jù)重心的性質(zhì)得出=,以及=,即可得出SADG:S△ANC的比值,再利用三角形中線(xiàn)的性質(zhì)得出S△ANC=S△ABN,進(jìn)而得出答案.
解答:解:延長(zhǎng)AG到BC于點(diǎn)N,
∵點(diǎn)G是△ABC的重心,GD∥BC,
=,
=,
∴SADG:S△ANC=(2=,
∵根據(jù)G是△ABC的重心,則AN是三角形中線(xiàn),
∴S△ANC=S△ABN
∴SADG:S△ABC=4:18=2:9.
故選:C.
點(diǎn)評(píng):此題主要考查了相似三角形的判定與性質(zhì)和三角形重心的性質(zhì)等知識(shí),根據(jù)已知得出SADG:S△ANC=(2是解題關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,點(diǎn)F是△ABC外接圓
BC
的中點(diǎn),點(diǎn)D、E在邊AC上,使得AD=AB,BE=EC.證明:B、E、D、F四點(diǎn)共圓.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

27、如圖,點(diǎn)P是△ABC內(nèi)的一點(diǎn),有下列結(jié)論:①∠BPC>∠A;②∠BPC一定是鈍角;③∠BPC=∠A+∠ABP+∠ACP.其中正確的結(jié)論共有( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,點(diǎn)O是△ABC內(nèi)任意一點(diǎn),G、D、E分別為AC、OA、OB的中點(diǎn),F(xiàn)為BC上一動(dòng)點(diǎn),問(wèn)四邊形GDEF能否為平行四邊形?若可以,指出F點(diǎn)位置,并給予證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•攀枝花模擬)如圖,點(diǎn)G是△ABC的重心,CG的延長(zhǎng)線(xiàn)交AB于D,GA=5,GC=4,GB=3,將△ADG繞點(diǎn)D順時(shí)針?lè)较蛐D(zhuǎn)180°得到△BDE,則△EBC的面積=
12
12

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(1997•天津)如圖,點(diǎn)I是△ABC的內(nèi)心,AI交BC邊于D,交△ABC的外接圓于點(diǎn)E.
求證:(1)IE=BE;
      (2)IE是AE和DE的比例中項(xiàng).

查看答案和解析>>

同步練習(xí)冊(cè)答案