如圖,拋物線y=x2-2x-3與x軸交于A,B兩點(diǎn),與y軸交于C點(diǎn).
(1)求拋物線的頂點(diǎn)坐標(biāo);
(2)設(shè)直線y=-x+3與y軸的交點(diǎn)是D,在線段BD上任取一點(diǎn)E(不與B,D重合),經(jīng)過(guò)A,B,E三點(diǎn)的圓交直線BC于點(diǎn)F,試判斷△AEF的形狀,并說(shuō)明理由.

解:(1)y=x2-2x-3
=x2-2x+1-1-3
=(x-1)2-4;
∴拋物線的頂點(diǎn)坐標(biāo)為(1,-4).

(2)由拋物線y=x2-2x-3和直線y=-x+3可求得:
A(-1,0)、B(3,0)、C(0,-3)、D(0,3),
∴OB=OC=OD=3,
∴∠OBD=∠OBC=45°;
又∵∠OBD=∠AFE,∠OBC=∠AEF(在同圓中,同弧所對(duì)的圓周角相等),
∴∠AFE=∠AEF=45°,
∴∠EAF=90°,AE=AF;
∴△AEF是等腰直角三角形.
分析:(1)用配方法將拋物線的解析式化為頂點(diǎn)坐標(biāo)式,即可得到拋物線的頂點(diǎn)坐標(biāo).
(2)根據(jù)拋物線和已知直線的解析式,易求得A、B、C、D四點(diǎn)的坐標(biāo),即可得到∠OBD、∠OBC的度數(shù);在過(guò)A、E、F三點(diǎn)的圓中,由圓周角定理知:∠AEF=∠OBC,∠AFE=∠OBE,即可得到∠AEF、∠AFE的度數(shù),然后根據(jù)這兩個(gè)角的度數(shù)來(lái)判斷△AEF的形狀.
點(diǎn)評(píng):此題考查了函數(shù)圖象與坐標(biāo)軸交點(diǎn)坐標(biāo)的求法、圓周角定理、等腰直角三角形的判定等知識(shí),在解題過(guò)程中,要注意數(shù)形結(jié)合思想的應(yīng)用,難度中上.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,拋物線y=x2+4x與x軸分別相交于點(diǎn)B、O,它的頂點(diǎn)為A,連接AB,AO.
(1)求點(diǎn)A的坐標(biāo);
(2)以點(diǎn)A、B、O、P為頂點(diǎn)構(gòu)造直角梯形,請(qǐng)求一個(gè)滿足條件的頂點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

16、如圖,拋物線y=-x2+2x+m(m<0)與x軸相交于點(diǎn)A(x1,0)、B(x2,0),點(diǎn)A在點(diǎn)B的左側(cè).當(dāng)x=x2-2時(shí),y
0(填“>”“=”或“<”號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知如圖,拋物線y=x2+(k2+1)x+k+1的對(duì)稱軸是直線x=-1,且頂點(diǎn)在x軸上方.設(shè)M是直線x=-1左側(cè)拋物線上的一動(dòng)點(diǎn),過(guò)點(diǎn)M作x軸的垂線MG,垂足為G,過(guò)點(diǎn)M作直線x=-1的垂線MN,垂足為N,直線x=-1與x軸的交于H點(diǎn),若M點(diǎn)的橫坐標(biāo)為x,矩形MNHG的周長(zhǎng)為l.
(1)求出k的值;
(2)寫出l關(guān)于x的函數(shù)解析式;
(3)是否存在點(diǎn)M,使矩形MNHG的周長(zhǎng)最?若存在,求出點(diǎn)M的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•揚(yáng)州)如圖,拋物線y=x2-2x-8交y軸于點(diǎn)A,交x軸正半軸于點(diǎn)B.
(1)求直線AB對(duì)應(yīng)的函數(shù)關(guān)系式;
(2)有一寬度為1的直尺平行于y軸,在點(diǎn)A、B之間平行移動(dòng),直尺兩長(zhǎng)邊所在直線被直線AB和拋物線截得兩線段MN、PQ,設(shè)M點(diǎn)的橫坐標(biāo)為m,且0<m<3.試比較線段MN與PQ的大小.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,拋物線y=x2-2x-3與x軸分別交于A,B兩點(diǎn).
(1)求A,B兩點(diǎn)的坐標(biāo);
(2)求拋物線頂點(diǎn)M關(guān)于x軸對(duì)稱的點(diǎn)M′的坐標(biāo),并判斷四邊形AMBM′是何特殊平行四邊形.(不要求說(shuō)明理由)

查看答案和解析>>

同步練習(xí)冊(cè)答案