已知點(diǎn)M(-2,4)、點(diǎn)N(3,1),在x軸上求一點(diǎn)P,使PM+PN最小,則點(diǎn)P的坐標(biāo)是________.

(2,0)
分析:首先作點(diǎn)N關(guān)于x軸的對(duì)稱(chēng)點(diǎn)N′,則MN′交x軸于點(diǎn)P,然后求得直線(xiàn)MN′的解析式,繼而可得點(diǎn)P的坐標(biāo).
解答:解:作點(diǎn)N關(guān)于x軸的對(duì)稱(chēng)點(diǎn)N′,則MN′交x軸于點(diǎn)P,
∵N(3,1),
∴N′(3,-1),
設(shè)直線(xiàn)MN′的解析式為y=kx+b,

解得:,
∴直線(xiàn)MN′的解析式為y=-x+2,
當(dāng)y=0時(shí),x=2,
∴點(diǎn)P的坐標(biāo)是(2,0).
故答案為:(2,0).
點(diǎn)評(píng):此題考查了最短路徑問(wèn)題和用待定系數(shù)法求一次函數(shù)解析式.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

5、已知點(diǎn)A(m,2m)和點(diǎn)B(3,m2-3),直線(xiàn)AB平行于x軸,則m等于( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

14、如圖,已知點(diǎn)A,B,C在⊙O上,AC∥OB,∠BOC=40°,則∠ABO=
20
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖1,已知點(diǎn)A1,A2,A3是拋物線(xiàn)y=
1
2
x2上的三點(diǎn),線(xiàn)段A1B1,A2B2,A3B3都垂直于x軸,垂足分別為點(diǎn)B1,B2,B3,延長(zhǎng)線(xiàn)段B2A2交線(xiàn)段A1A3于點(diǎn)C.
(1)在圖(1)中,若點(diǎn)A1,A2,A3的橫坐標(biāo)依次為1,2,3,求線(xiàn)段CA2的長(zhǎng);
(2)若將拋物線(xiàn)改為y=
1
2
x2-x+1,如圖2,點(diǎn)A1,A精英家教網(wǎng)2,A3的橫坐標(biāo)依次為三個(gè)連續(xù)整數(shù),其他條件不變,求線(xiàn)段CA2的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

24、對(duì)于點(diǎn)O、M,點(diǎn)M沿MO的方向運(yùn)動(dòng)到O左轉(zhuǎn)彎繼續(xù)運(yùn)動(dòng)到N,使OM=ON,且OM⊥ON,這一過(guò)程稱(chēng)為M點(diǎn)關(guān)于O點(diǎn)完成一次“左轉(zhuǎn)彎運(yùn)動(dòng)”.正方形ABCD和點(diǎn)P,P點(diǎn)關(guān)于A左轉(zhuǎn)彎運(yùn)動(dòng)到P1,P1關(guān)于B左轉(zhuǎn)彎運(yùn)動(dòng)到P2,P2關(guān)于C左轉(zhuǎn)彎運(yùn)動(dòng)到P3,P3關(guān)于D左轉(zhuǎn)彎運(yùn)動(dòng)到P4,P4關(guān)于A左轉(zhuǎn)彎運(yùn)動(dòng)到P5,….
(1)請(qǐng)你在圖中用直尺和圓規(guī)在圖中確定點(diǎn)P1的位置;
(2)連接P1A、P1B,判斷△ABP1與△ADP之間有怎樣的關(guān)系?并說(shuō)明理由.
(3)以D為原點(diǎn)、直線(xiàn)AD為y軸建立直角坐標(biāo)系,并且已知點(diǎn)B在第二象限,A、P兩點(diǎn)的坐標(biāo)為(0,4)、(1,1),請(qǐng)你推斷:P4、P2009、P2010三點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)A(0,2)、B(4,0),點(diǎn)C、D分別在直線(xiàn)x=1與x=2上,且CD∥x軸,則AC+CD+DB的最小值為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案