【題目】如圖,ABC,CE平分∠ACB,CF平分ACD,且EFBCACM,CM=5,+的值.

【答案】100

【解析】

根據(jù)角平分線的定義可以證明出△CEF是直角三角形,再根據(jù)平行線的性質(zhì)以及角平分線的定義證明得到EM=CM=MF然后求出EF的長度,然后利用勾股定理列式計算即可求解.

解:CE平分ACBABECF平分ACD,

∴∠1=∠2=ACB,∠3=∠4=ACD

∴∠2+∠3= (∠ACB+∠ACD)=90°,

∴△CEF是直角三角形,

EFBC

∴∠1=∠5,∠4=∠F

∴∠2=∠5,∠3=∠F,

EM=CMCM=MF,

CM=5,

EF=5+5=10,

RtCEF, =100.

故答案為:100.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)CE,FB在同一直線上,點(diǎn)A,DBC異側(cè),ABCDAEDF,AD

1)求證:AB=CD;

2)若ABCF,B40°,求D的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)如圖(1),已知ABC,AB、AC為邊向ABC外作等邊三角形ABD和等邊三角形ACE,連接BE、CD.請你完成圖形,并證明:BE=CD;

2)如圖(2),已知ABC,AB、AC為邊向外作正方形ABFD和正方形ACGE,連接BE、CD,BECD有什么數(shù)量關(guān)系?說明理由;

3)運(yùn)用(1)(2)解答中所積累的經(jīng)驗(yàn)和知識,完成下題:如圖(3),要測量河兩岸相對的兩點(diǎn)B、E的距離,已經(jīng)測得∠ABC=45°,∠CAE=90°,AB=BC=1千米,AC=AE.BE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,Rt ABC,,AB=5cm, AC=3cm, 動點(diǎn)P從點(diǎn)B出發(fā)沿射線BC2cm/s 的速度移動,設(shè)運(yùn)動的時間為t.t= __________ 時三角形ABP為直角三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一款名為超級瑪麗的游戲中,瑪麗到達(dá)一個高為10米的高臺A,利用旗桿頂部的繩索,劃過90°到達(dá)與高臺A水平距離為17米,高為3米的矮臺B,求旗桿的高度OM和瑪麗在蕩繩索過程中離地面的最低點(diǎn)的高度MN.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在RtABC中,∠A=90°,AB=AC,點(diǎn)DE分別在邊AB,AC上,AD=AE,連接DC,點(diǎn)M,PN分別為DE,DC,BC的中點(diǎn).

(1)觀察猜想

1中,線段PMPN的數(shù)量關(guān)系是 ,位置關(guān)系是

(2)探究證明

ADE繞點(diǎn)A逆時針方向旋轉(zhuǎn)到圖2的位置,連接MNBD,CE,判斷PMN的形狀,并說明理由;

(3)拓展延伸

ADE繞點(diǎn)A在平面內(nèi)自由旋轉(zhuǎn),若AD=4,AB=10,請直接寫出PMN面積的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)P是邊長為的正方形ABCD的對角線BD上的動點(diǎn),過點(diǎn)P分別作PEBC于點(diǎn)E,PFDC于點(diǎn)F,連接AP并延長,交射線BC于點(diǎn)H,交射線DC于點(diǎn)M,連接EFAH于點(diǎn)G,當(dāng)點(diǎn)PBD上運(yùn)動時(不包括B、D兩點(diǎn)),以下結(jié)論中:①MF=MC;AHEF;AP2=PMPH;EF的最小值是.其中正確結(jié)論是( 。

A. ①③ B. ②③ C. ②③④ D. ②④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知 AD//BC, 點(diǎn) E CD 上一點(diǎn),AE、BE 分別平分∠DAB、∠CBA,BE AD 的延長線于點(diǎn) F.求證:(1ABEAEF;(2) AD+BC=AB

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,ABC,AB=AC,BC=BD,AD=DE=EB,求∠A的度數(shù).

查看答案和解析>>

同步練習(xí)冊答案