【題目】如圖,△ABC中,CE平分∠ACB,CF平分∠ACD,且EF∥BC交AC于M,若CM=5,求+的值.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)C,E,F,B在同一直線上,點(diǎn)A,D在BC異側(cè),AB∥CD,AE=DF,∠A=∠D.
(1)求證:AB=CD;
(2)若AB=CF,∠B=40°,求∠D的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖(1),已知△ABC,以AB、AC為邊向△ABC外作等邊三角形ABD和等邊三角形ACE,連接BE、CD.請你完成圖形,并證明:BE=CD;
(2)如圖(2),已知△ABC,以AB、AC為邊向外作正方形ABFD和正方形ACGE,連接BE、CD,BE和CD有什么數(shù)量關(guān)系?說明理由;
(3)運(yùn)用(1)(2)解答中所積累的經(jīng)驗(yàn)和知識,完成下題:如圖(3),要測量河兩岸相對的兩點(diǎn)B、E的距離,已經(jīng)測得∠ABC=45°,∠CAE=90°,AB=BC=1千米,AC=AE.求BE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在Rt ABC中,,AB=5cm, AC=3cm, 動點(diǎn)P從點(diǎn)B出發(fā)沿射線BC以2cm/s 的速度移動,設(shè)運(yùn)動的時間為t秒.t= __________ 時三角形ABP為直角三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一款名為超級瑪麗的游戲中,瑪麗到達(dá)一個高為10米的高臺A,利用旗桿頂部的繩索,劃過90°到達(dá)與高臺A水平距離為17米,高為3米的矮臺B,求旗桿的高度OM和瑪麗在蕩繩索過程中離地面的最低點(diǎn)的高度MN.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在Rt△ABC中,∠A=90°,AB=AC,點(diǎn)D,E分別在邊AB,AC上,AD=AE,連接DC,點(diǎn)M,P,N分別為DE,DC,BC的中點(diǎn).
(1)觀察猜想
圖1中,線段PM與PN的數(shù)量關(guān)系是 ,位置關(guān)系是 ;
(2)探究證明
把△ADE繞點(diǎn)A逆時針方向旋轉(zhuǎn)到圖2的位置,連接MN,BD,CE,判斷△PMN的形狀,并說明理由;
(3)拓展延伸
把△ADE繞點(diǎn)A在平面內(nèi)自由旋轉(zhuǎn),若AD=4,AB=10,請直接寫出△PMN面積的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)P是邊長為的正方形ABCD的對角線BD上的動點(diǎn),過點(diǎn)P分別作PE⊥BC于點(diǎn)E,PF⊥DC于點(diǎn)F,連接AP并延長,交射線BC于點(diǎn)H,交射線DC于點(diǎn)M,連接EF交AH于點(diǎn)G,當(dāng)點(diǎn)P在BD上運(yùn)動時(不包括B、D兩點(diǎn)),以下結(jié)論中:①MF=MC;②AH⊥EF;③AP2=PMPH;④EF的最小值是.其中正確結(jié)論是( 。
A. ①③ B. ②③ C. ②③④ D. ②④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知 AD//BC, 點(diǎn) E 為 CD 上一點(diǎn),AE、BE 分別平分∠DAB、∠CBA,BE交 AD 的延長線于點(diǎn) F.求證:(1)△ABE≌△AEF;(2) AD+BC=AB
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com