如圖,在正方形ABCD中,F(xiàn)是CD上一點,AE⊥AF,點E在CB的延長線上,EF交AB于點G,當tan∠DAF=數(shù)學公式時,△AEF的面積為10,則當tan∠DAF=數(shù)學公式時,△AEF的面積是多少.

解:∵AE⊥AF,
∴∠1+∠2=90°
又∵∠2+∠3=∠BAD=90°,
∴∠1=∠3.
又∵AB=AD,∠ABE=∠ADF=90°,
∴△ABE≌△ADF,
∴AE=AF.
當tan∠DAF=時,即=,
設DF=k,則AD=3k,AF=k,
∵S△AEF=AE•AF.
×k•k=10,
∴k=,
∴AD=3
當tan∠DAF=時,即=
∴DF=2,
∴AF==,
∴S△AEF=××=13.
即當tan∠DAF=時,△AFE的面積為13.
分析:先證△ABE≌△ADF,從而得出AE=AF,=.設DF=k,根據(jù)△AEF的面積為10,求出k,再利用勾股定理求出AF,面積也可求出.
點評:考查綜合應用解直角三角形、直角三角形性質,進行邏輯推理能力和運算能力.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖:在正方形網(wǎng)格上有△ABC,△DEF,說明這兩個三角形相似,并求出它們的相似比.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在Rt△ABC中,∠ACB=90°,以AC為直徑的⊙O與AB邊交于點D,過點D作⊙O的切線精英家教網(wǎng),交BC于點E.
(1)求證:點E是邊BC的中點;
(2)若EC=3,BD=2
6
,求⊙O的直徑AC的長度;
(3)若以點O,D,E,C為頂點的四邊形是正方形,試判斷△ABC的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

23、如圖,在Rt△ABC中,∠BAC=90°,AD=CD,點E是邊AC的中點,連接DE,DE的延長線與邊BC相交于點F,AG∥BC,交DE于點G,連接AF、CG.
(1)求證:AF=BF;
(2)如果AB=AC,求證:四邊形AFCG是正方形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•陜西)如圖,正三角形ABC的邊長為3+
3

(1)如圖①,正方形EFPN的頂點E、F在邊AB上,頂點N在邊AC上,在正三角形ABC及其內部,以點A為位似中心,作正方形EFPN的位似正方形E′F′P′N′,且使正方形E′F′P′N′的面積最大(不要求寫作法);
(2)求(1)中作出的正方形E′F′P′N′的邊長;
(3)如圖②,在正三角形ABC中放入正方形DEMN和正方形EFPH,使得DE、EF在邊AB上,點P、N分別在邊CB、CA上,求這兩個正方形面積和的最大值和最小值,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在Rt△ABC中,∠C=90°,以斜邊AB為邊向外作正方形ABDE,且正方形對角線交于點O,連接OC,已知AC=5,OC=6
2
,求另一直角邊BC的長.

查看答案和解析>>

同步練習冊答案