(2007•婁底)經(jīng)過x軸上A(-1,0)、B(3,0)兩點(diǎn)的拋物線y=ax2+bx+c交y軸于點(diǎn)C,設(shè)拋物線的頂點(diǎn)為D,若以DB為直徑的⊙G經(jīng)過點(diǎn)C,求解下列問題:
(1)用含a的代數(shù)式表示出C,D的坐標(biāo);
(2)求拋物線的解析式;
(3)如圖,當(dāng)a<0時,能否在拋物線上找到一點(diǎn)Q,使△BDQ為直角三角形?你能寫出Q點(diǎn)的坐標(biāo)嗎?

【答案】分析:(1)可根據(jù)A,B的坐標(biāo),用交點(diǎn)式二次函數(shù)通式來設(shè)出拋物線的解析式,進(jìn)而可得出D,C的坐標(biāo).
(2)本題的關(guān)鍵是求出a的值.可通過相似三角形來求解,過D作DE⊥y軸于E,易知△DEC∽△COB,可通過得出的關(guān)于DE,CO,EC,OB的比例關(guān)系式,求出a的值.進(jìn)而可求出拋物線的解析式.
(3)本題要分兩種情況進(jìn)行討論.
①當(dāng)∠BDQ=90°時,此時DQ是圓G的切線,設(shè)DQ交y軸于M,那么可通過求直線DM的解析式,然后聯(lián)立拋物線的解析式即可求出Q點(diǎn)的坐標(biāo).
②當(dāng)∠DBQ=90°時,可過Q作x軸的垂線,設(shè)垂足為F,先設(shè)出Q點(diǎn)的坐標(biāo),然后根據(jù)相似三角形DHB和BFQ得出的關(guān)于DH,BF,BH,F(xiàn)Q的比例關(guān)系式,求出Q點(diǎn)的坐標(biāo).
③當(dāng)∠BQD=90°時,顯然此時Q,C重合,因此Q點(diǎn)的坐標(biāo)即為C點(diǎn)的坐標(biāo).
綜上所述可得出符合條件的Q點(diǎn)的坐標(biāo).
解答:解:(1)設(shè)拋物線的解析式為y=a(x+1)(x-3)
則y=a(x2-2x-3)=a(x-1)2-4a
則點(diǎn)D的坐標(biāo)為D(1,-4a)
點(diǎn)C的坐標(biāo)為C(0,-3a)

(2)如圖①所示,過點(diǎn)D作DE⊥y軸于E,如圖①所示:
則有△DEC∽△COB


∴a2=1a=±1
故拋物線的解析式為y=x2-2x-3或y=-x2+2x+3;

(3)a<0時,a=-1,拋物線y=-x2+2x+3,
這時可以找到點(diǎn)Q,很明顯,點(diǎn)C即在拋物線上,
又在⊙G上,∠BCD=90°,這時Q與C點(diǎn)重合,點(diǎn)Q坐標(biāo)為Q(0,3).
如圖②,若∠DBQ為90°,作QF⊥y軸于F,DH⊥x軸于H
可證Rt△DHB∽Rt△BFQ

則點(diǎn)Q坐標(biāo)(k,-k2+2k+3)

化簡為2k2-3k-9=0
即(k-3)(2k+3)=0
解之為k=3或
得Q坐標(biāo):
若∠BDQ為90°,
如圖③,延長DQ交y軸于M,
作DE⊥y軸于E,DH⊥x軸于H
可證明△DEM∽△DHB


,點(diǎn)M的坐標(biāo)為DM所在的直線方程為
與y=-x2+2x+3的解為,
得交點(diǎn)坐標(biāo)Q為
即滿足題意的Q點(diǎn)有三個,(0,3),
點(diǎn)評:本題主要考查了二次函數(shù)解析式的確定、相似三角形的判定和應(yīng)用、函數(shù)圖象交點(diǎn)等知識,綜合性強(qiáng),考查學(xué)生分類討論,數(shù)形結(jié)合的數(shù)學(xué)思想方法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2007年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(07)(解析版) 題型:解答題

(2007•婁底)經(jīng)過x軸上A(-1,0)、B(3,0)兩點(diǎn)的拋物線y=ax2+bx+c交y軸于點(diǎn)C,設(shè)拋物線的頂點(diǎn)為D,若以DB為直徑的⊙G經(jīng)過點(diǎn)C,求解下列問題:
(1)用含a的代數(shù)式表示出C,D的坐標(biāo);
(2)求拋物線的解析式;
(3)如圖,當(dāng)a<0時,能否在拋物線上找到一點(diǎn)Q,使△BDQ為直角三角形?你能寫出Q點(diǎn)的坐標(biāo)嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2007年全國中考數(shù)學(xué)試題匯編《銳角三角函數(shù)》(07)(解析版) 題型:解答題

(2007•婁底)去年夏季山洪暴發(fā),幾所學(xué)校被山體滑坡推倒教學(xué)樓,為防止滑坡,經(jīng)過地質(zhì)人員勘測,當(dāng)坡角不超過45°時,可以確保山體不滑坡.某小學(xué)緊挨一座山坡,如圖所示,已知AF∥BC,斜坡AB長30米,坡角∠ABC=60°.改造后斜坡BE與地面成45°角,求AE至少是多少米?(精確到0.1米)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年浙江省杭州市蕭山區(qū)中考模擬數(shù)學(xué)試卷(黨山鎮(zhèn)中2 徐葉芳)(解析版) 題型:解答題

(2007•婁底)去年夏季山洪暴發(fā),幾所學(xué)校被山體滑坡推倒教學(xué)樓,為防止滑坡,經(jīng)過地質(zhì)人員勘測,當(dāng)坡角不超過45°時,可以確保山體不滑坡.某小學(xué)緊挨一座山坡,如圖所示,已知AF∥BC,斜坡AB長30米,坡角∠ABC=60°.改造后斜坡BE與地面成45°角,求AE至少是多少米?(精確到0.1米)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2007年湖南省婁底市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2007•婁底)去年夏季山洪暴發(fā),幾所學(xué)校被山體滑坡推倒教學(xué)樓,為防止滑坡,經(jīng)過地質(zhì)人員勘測,當(dāng)坡角不超過45°時,可以確保山體不滑坡.某小學(xué)緊挨一座山坡,如圖所示,已知AF∥BC,斜坡AB長30米,坡角∠ABC=60°.改造后斜坡BE與地面成45°角,求AE至少是多少米?(精確到0.1米)

查看答案和解析>>

同步練習(xí)冊答案