【題目】已知二次函數(shù)y=﹣ x2﹣x+
(1)在給定的直角坐標(biāo)系中,畫出這個(gè)函數(shù)的圖象;
(2)根據(jù)圖象,寫出當(dāng)y<0時(shí),x的取值范圍;
(3)若將此圖象沿x軸向右平移3個(gè)單位,請(qǐng)寫出平移后圖象所對(duì)應(yīng)的函數(shù)關(guān)系式.

【答案】
(1)解:二次函數(shù)的頂點(diǎn)坐標(biāo)為:x= =﹣1,y= =2,

當(dāng)x=0時(shí),y= ,

當(dāng)y=0時(shí),x=1或x=﹣3,

圖象如圖:


(2)解:據(jù)圖可知:當(dāng)y<0時(shí),x<﹣3,或x>1
(3)解:y=﹣ x2﹣x+ =﹣ (x+1)2+2

根據(jù)二次函數(shù)圖象移動(dòng)特點(diǎn),

∴此圖象沿x軸向右平移3個(gè)單位,平移后圖象所對(duì)應(yīng)的函數(shù)關(guān)系式:y=﹣ (x﹣2)2+2


【解析】(1)根據(jù)函數(shù)解析式確定圖象頂點(diǎn)坐標(biāo)及圖象與x、y軸交點(diǎn)坐標(biāo)即可畫出圖象,(2)根據(jù)圖象即可得出答案,(3)根據(jù)圖象平移“左加右減、上加下減”特點(diǎn)即可寫出函數(shù)解析式.
【考點(diǎn)精析】通過靈活運(yùn)用二次函數(shù)的圖象和二次函數(shù)圖象的平移,掌握二次函數(shù)圖像關(guān)鍵點(diǎn):1、開口方向2、對(duì)稱軸 3、頂點(diǎn) 4、與x軸交點(diǎn) 5、與y軸交點(diǎn);平移步驟:(1)配方 y=a(x-h)2+k,確定頂點(diǎn)(h,k)(2)對(duì)x軸左加右減;對(duì)y軸上加下減即可以解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】動(dòng)車的開通為揚(yáng)州市民的出行帶來了方便.從揚(yáng)州到合肥,路程為360km,某趟動(dòng)車的平均速度比普通列車快50%,所需時(shí)間比普通列車少1小時(shí),求該趟動(dòng)車的平均速度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù) ,當(dāng)自變量x取m時(shí)對(duì)應(yīng)的值大于0,當(dāng)自變量x分別取m﹣1、m+1時(shí)對(duì)應(yīng)的函數(shù)值為y1、y2 , 則y1、y2必須滿足(
A.y1>0、y2>0
B.y1<0、y2<0
C.y1<0、y2>0
D.y1>0、y2<0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】揚(yáng)州市體育中考現(xiàn)場(chǎng)考試內(nèi)容有三項(xiàng):50米跑為必測(cè)項(xiàng)目;另在立定跳遠(yuǎn)、實(shí)心球(二選一)和坐位體前屈、1分鐘跳繩(二選一)中選擇兩項(xiàng).
(1)毎位考生有種選擇方案;
(2)用畫樹狀圖或列表的方法求小明與小剛選擇同種方案的概率.(友情提酲:各種方案用A、B、C、…或①、②、③、…等符號(hào)來代表可簡(jiǎn)化解答過程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,∠BAC=90°,AB<AC,M是BC邊的中點(diǎn),MN⊥BC交AC于點(diǎn)N.動(dòng)點(diǎn)P從點(diǎn)B出發(fā)沿射線BA以每秒 厘米的速度運(yùn)動(dòng).同時(shí),動(dòng)點(diǎn)Q從點(diǎn)N出發(fā)沿射線NC運(yùn)動(dòng),且始終保持MQ丄MP.設(shè)運(yùn)動(dòng)時(shí)間為t秒(t>0).
(1)△PBM與△QNM相似嗎?以圖1為例說明理由;
(2)若∠ABC=60°,AB=4 厘米. ①求動(dòng)點(diǎn)Q的運(yùn)動(dòng)速度;
②設(shè)△APQ的面積為S(平方厘米),求S與t的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】
(1)將矩形ABCD紙片沿對(duì)角線AC剪開,得到△ABC和△A′C′D,如圖1所示.將△A′C′D的頂點(diǎn)A′與點(diǎn)A重合,并繞點(diǎn)A按逆時(shí)針方向旋轉(zhuǎn),使點(diǎn)D、A(A′)、B在同一條直線上,如圖2所示. 觀察圖2可知:與BC相等的線段是 , ∠CAC′=°.

(2)①如圖3,△ABC中,AG⊥BC于點(diǎn)G,以A為直角頂點(diǎn),分別以AB、AC為直角邊,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,過點(diǎn)E、F作射線GA的垂線,垂足分別為P、Q.試探究EP與FQ之間的數(shù)量關(guān)系,并證明你的結(jié)論. 拓展延伸

②如圖4,△ABC中,AG⊥BC于點(diǎn)G,分別以AB、AC為一邊向△ABC外作矩形ABME和矩形ACNF,射線GA交EF于點(diǎn)H.若AB=kAE,AC=kAF,試探究HE與HF之間的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)第5次、第6次人口普查的結(jié)果,2000年,2010年我國(guó)每10萬人受教育程度的情況如下:
根據(jù)圖中的信息,完成下列填空:
(1)2010年我國(guó)具有高中文化程度的人口比重為
(2)2010年我國(guó)具有文化程度的人口最多;
(3)同2000年相比,2010年我國(guó)具有文化程度的人口增幅最大.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),P是反比例函數(shù)y= (x>0)圖象上的任意一點(diǎn),以P為圓心,PO為半徑的圓與x、y軸分別交于點(diǎn)A、B.
(1)判斷P是否在線段AB上,并說明理由;
(2)求△AOB的面積;
(3)Q是反比例函數(shù)y= (x>0)圖象上異于點(diǎn)P的另一點(diǎn),請(qǐng)以Q為圓心,QO半徑畫圓與x、y軸分別交于點(diǎn)M、N,連接AN、MB.求證:AN∥MB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線l經(jīng)過點(diǎn)A(1,0),與雙曲線y= (x>0)交于點(diǎn)B(2,1).過點(diǎn)P(p,p﹣1)(p>1)作x軸的平行線分別交雙曲線y= (x>0)和y=﹣ (x<0)于點(diǎn)M、N.
(1)求m的值和直線l的解析式;
(2)若點(diǎn)P在直線y=2上,求證:△PMB∽△PNA;
(3)是否存在實(shí)數(shù)p,使得SAMN=4SAMP?若存在,請(qǐng)求出所有滿足條件的p的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案