已知△ABC為等邊三角形,點(diǎn)D為直線BC上一動(dòng)點(diǎn)(點(diǎn)D不與點(diǎn)B、點(diǎn)C重合).以AD為邊作等邊三角形ADE,連接CE.

(1)如圖1,當(dāng)點(diǎn)D在邊BC上時(shí).①求證:△ABD≌△ACE;②直接判斷結(jié)論BC=DC+CE是否成立;
(2)如圖2,當(dāng)點(diǎn)D在邊BC的延長(zhǎng)線上時(shí),其他條件不變,請(qǐng)寫(xiě)出BC、DC、CE之間存在的數(shù)量關(guān)系,并寫(xiě)出證明過(guò)程;
(3)如圖3,當(dāng)點(diǎn)D在邊CB的延長(zhǎng)線上時(shí),且點(diǎn)A、點(diǎn)E分別在直線BC的異側(cè),其他條件不變,直接寫(xiě)出BC、DC、CE之間存在的數(shù)量關(guān)系.
分析:(1)①根據(jù)等邊三角形的性質(zhì)就可以得出∠BAC=∠DAE=60°,AB=BC=AC,AD=DE=AE,進(jìn)而就可以得出△ABD≌△ACE;
②由△ABD≌△ACE就可以得出BC=DC+CE;
(2)由等邊三角形的性質(zhì)就可以得出∠BAC=∠DAE=60°,AB=BC=AC,AD=DE=AE,進(jìn)而就可以得出△ABD≌△ACE,就可以得出BC+CD=CE;
(3)由等邊三角形的性質(zhì)就可以得出∠BAC=∠DAE=60°,AB=BC=AC,AD=DE=AE,進(jìn)而就可以得出△ABD≌△ACE,就可以得出CE+BC=CD.
解答:解:(1)①∵△ABC和△ADE是等邊三角形,
∴∠BAC=∠DAE=60°,AB=BC=AC,AD=DE=AE.
∴∠BAC-∠DAC=∠DAE-∠DAC,
∴∠BAD=∠EAC.
在△ABD和△ACE中
AB=AC
∠BAD=∠EAC
AD=AE
,
∴△ABD≌△ACE(SAS).
②∵△ABD≌△ACE,
∴BD=CE.
∵BC=BD+CD,
∴BC=CE+CD.
(2)BC+CD=CE.
∵△ABC和△ADE是等邊三角形,
∴∠BAC=∠DAE=60°,AB=BC=AC,AD=DE=AE.
∴∠BAC+∠DAC=∠DAE+∠DAC,
∴∠BAD=∠EAC.
在△ABD和△ACE中
AB=AC
∠BAD=∠EAC
AD=AE
,
∴△ABD≌△ACE(SAS).
∴BD=CE.
∵BD=BC+CD,
∴CE=BC+CD;
(3)DC=CE+BC.
∵△ABC和△ADE是等邊三角形,
∴∠BAC=∠DAE=60°,AB=BC=AC,AD=DE=AE.
∴∠BAC-∠BAE=∠DAE-∠BAE,
∴∠BAD=∠EAC.
在△ABD和△ACE中
AB=AC
∠BAD=∠EAC
AD=AE
,
∴△ABD≌△ACE(SAS).
∴BD=CE.
∵DC=BD+BC,
∴DC=CE+BC;
點(diǎn)評(píng):本題考查了等邊三角形的性質(zhì)的運(yùn)用,等式的性質(zhì)的運(yùn)用,全等三角形的判定及性質(zhì)的運(yùn)用,解答時(shí)證明三角形全等是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知△ABC是等邊三角形,⊙O為它的外接圓,點(diǎn)P是
BC
上任一點(diǎn).
(1)圖中與∠PBC相等的角為
 
;
(2)試猜想出三條線段PA、PB、PC之間的數(shù)量關(guān)系,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

三角形外心我們可以理解為:到三角形三個(gè)頂點(diǎn)距離相等的點(diǎn)稱(chēng)三角形的外心,由此,我們定義:到三角形的兩個(gè)頂點(diǎn)距離相等的點(diǎn),叫做此三角形的準(zhǔn)外心.
舉例:如圖1,若PA=PB,則點(diǎn)P為△ABC的準(zhǔn)外心.
(1)應(yīng)用:如圖2,CD為等邊三角形ABC的高,準(zhǔn)外心P在高CD上,且PD=
12
AB,求∠APB的度數(shù).
(2)探究:已知△ABC為直角三角形,斜邊BC=5,AB=3,準(zhǔn)外心P在AC邊上,試探究PA的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知D是等邊△ABC外一點(diǎn),∠BDC=120°,則AD、BD、DC三條線段的數(shù)量關(guān)系為
AD=BD+DC
AD=BD+DC

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

已知△ABC是等邊三角形,⊙O為它的外接圓,點(diǎn)P是數(shù)學(xué)公式上任一點(diǎn).
(1)圖中與∠PBC相等的角為_(kāi)_____;
(2)試猜想出三條線段PA、PB、PC之間的數(shù)量關(guān)系,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009年廣東省廣州市花都區(qū)中考數(shù)學(xué)二模試卷(解析版) 題型:解答題

(2009•花都區(qū)二模)已知△ABC是等邊三角形,⊙O為它的外接圓,點(diǎn)P是上任一點(diǎn).
(1)圖中與∠PBC相等的角為_(kāi)_____;
(2)試猜想出三條線段PA、PB、PC之間的數(shù)量關(guān)系,并證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案