如圖,在Rt△ABC中,∠ACB=45°,∠BAC=90°,AB=AC,點D是AB的中點,AF⊥CD于H交BC于F,BE∥AC交AF的延長線于E.求證:BC垂直且平分DE.

證明:在△ADC中,∠DAH+∠ADH=90°,∠ACH+∠ADH=90°,
∴∠DAH=∠DCA,
∵∠BAC=90°,BE∥AC,
∴∠CAD=∠ABE=90°.
又∵AB=CA,
∴在△ABE與△CAD中,

∴△ABE≌△CAD(ASA),
∴AD=BE,
又∵AD=BD,
∴BD=BE,
在Rt△ABC中,∠ACB=45°,∠BAC=90°,AB=AC,
故∠ABC=45°.
∵BE∥AC,
∴∠EBD=90°,∠EBF=90°-45°=45°,
∴△DBP≌△EBP(SAS),
∴DP=EP,
即可得出BC垂直且平分DE.
分析:證明出△DBP≌△EBP,即可證明BC垂直且平分DE.
點評:此題關鍵在于轉(zhuǎn)化為證明出△DBP≌△EBP.通過利用圖中所給信息,證明出兩三角形相似,
而證明相似可以通過證明角相等和線段相等來實現(xiàn).
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2013•莆田質(zhì)檢)如圖,在Rt△ABC中,∠C=90°,∠BAC的平分線AD交BC于點D,點E是AB上一點,以AE為直徑的⊙O過點D,且交AC于點F.
(1)求證:BC是⊙O的切線;
(2)若CD=6,AC=8,求AE.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,AD和BD分別是∠BAC和∠ABC的平分線,它們相交于點D,求點D到BC的距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在Rt△ABC中,∠C=90°,∠A=30°,BC=1,將三角板中一個30°角的頂點D放在AB邊上移動,使這個30°角的兩邊分別與△ABC的邊AC、BC相交于點E、F,且使DE始終與AB垂直.
(1)畫出符合條件的圖形.連接EF后,寫出與△ABC一定相似的三角形;
(2)設AD=x,CF=y.求y與x之間函數(shù)解析式,并寫出函數(shù)的定義域;
(3)如果△CEF與△DEF相似,求AD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在Rt△ABC中,BD⊥AC,sinA=
3
5
,則cos∠CBD的值是(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=4cm,D、E分別為邊AB、BC的中點,連接DE,點P從點A出發(fā),沿折線AD-DE-EB運動,到點B停止.點P在AD上以
5
cm/s的速度運動,在折線DE-EB上以1cm/s的速度運動.當點P與點A不重合時,過點P作PQ⊥AC于點Q,以PQ為邊作正方形PQMN,使點M落在線段AC上.設點P的運動時間為t(s).
(1)當點P在線段DE上運動時,線段DP的長為
(t-2)
(t-2)
cm,(用含t的代數(shù)式表示).
(2)當點N落在AB邊上時,求t的值.
(3)當正方形PQMN與△ABC重疊部分圖形為五邊形時,設五邊形的面積為S(cm2),求S與t的函數(shù)關系式.

查看答案和解析>>

同步練習冊答案