已知⊙O1與⊙O2的圓心距O1O2=6cm,且兩圓的半徑滿(mǎn)足一元二次方程x2-6x+8=0.則兩圓的位置關(guān)系為( )
A.外切
B.內(nèi)切
C.外離
D.相交
【答案】分析:解答此題,先要求一元二次方程的兩根,然后根據(jù)圓與圓的位置關(guān)系判斷條件,確定位置關(guān)系.
解答:解:解方程x2-6x+8=0得:
x1=2,x2=4,
∵O1O2=6,x2-x1=2,x2+x1=6,
∴O1O2=x2+x1
∴⊙O1與⊙O2相外切.
故選A.
點(diǎn)評(píng):本題主要考查圓與圓的位置關(guān)系的知識(shí)點(diǎn),綜合考查一元二次方程的解法及兩圓的位置關(guān)系的判斷.此類(lèi)題比較基礎(chǔ),需要同學(xué)熟練掌握.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

6、已知⊙O1與⊙O2的半徑分別為3cm和4cm,若O1O2=7cm,則⊙O1與⊙O2的位置關(guān)系是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

5、已知⊙O1與⊙O2的半徑分別是2cm、4cm,圓心距O1O2為3cm,則⊙O1與⊙O2的位置關(guān)系是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

23、已知⊙O1與⊙O2的圓心距是9cm,它們的半徑分別為3cm和6cm,則這兩圓的位置關(guān)系是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知⊙O1與⊙O2的半徑分別為2cm和5cm,兩圓的圓心距O1O2=5cm,則兩圓的位置關(guān)系是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知⊙O1與⊙O2的半徑分別為r1,r2,⊙O2經(jīng)過(guò)⊙O1的圓心O1,且兩圓相交于A,B兩點(diǎn),C為⊙O2上的點(diǎn),連接AC交⊙O1于D點(diǎn),再連接BC,BD,AO1,AO2,O1O2,有如下四個(gè)結(jié)論:①∠BDC=∠AO1O2;②
BD
BC
=
r1
r2
;③AD=DC; ④BC=DC.其中正確結(jié)論的序號(hào)為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案