九年級上冊的教材第118頁有這樣一道習(xí)題:
“在一塊三角形余料ABC中,它的邊BC=120mm,高線AD=80mm.要把它加工成正方形零件(如圖),使正方形的一邊在BC上,其余兩個頂點分別在AB,AC上.問加工成的正方形零件的邊長為多少mm?”
(1)請你解答上題;
(2)若將上題圖中的正方形PQMN改為矩形,其余條件不變,求矩形PQMN的面積S的最大值;
(3)我們把上面習(xí)題中的正方形PQMN叫做“BC邊上的△ABC的內(nèi)接正方形”,若在習(xí)題的條件下,又知AB=150mm,AC=100mm,請分別寫出AB邊上的△ABC的內(nèi)接正方形的邊長和AC邊上的△ABC的內(nèi)接正方形的邊長(不必寫出過程,只要直接寫出答案即可,結(jié)果精確到1mm);
(4)結(jié)合第(1)、(3)題,若三角形的三邊長分別為a,b,c,各邊上的高分別為ha,hb,hc,要使a邊上的三角形內(nèi)接正方形的面積最大,請寫出a與ha必須滿足的條件(不必寫出過程).
解:(1)設(shè)正方形的邊長為xmm,由條件可得△APN∽△ABC,
∴,即,解得x=48mm.
(2)設(shè)PN= xmm,由條件可得△APN∽△ABC,
∴,即,解得PQ=.
∴S=PN·PQ=,
∴S的最大值為2400mm2.
(3); mm
(4)a+ha<b+hb且a+ha < c+hc.
【解析】(1)設(shè)正方形的邊長為xmm,然后表示出AE的長度,再根據(jù)相似三角形對應(yīng)高的比等于對應(yīng)邊的比列出比例式,計算即可得解;
(2)設(shè)PN=x,用PQ表示出AE的長度,然后根據(jù)相似三角形對應(yīng)高的比等于相似比列出比例式并用x表示出PN,然后根據(jù)矩形的面積公式列式計算,再根據(jù)二次函數(shù)的最值問題解答;
(3)根據(jù)AB、AC的長度求出相應(yīng)邊上的高,然后根據(jù)(1)中的方法計算即可;
(4)用三角形的邊長與相應(yīng)邊上的高表示出這邊上的內(nèi)接正方形的邊長,再根據(jù)正方形的面積越大,則邊長越大解答.
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2012屆浙江省杭州市中考數(shù)學(xué)模擬數(shù)學(xué)試卷(帶解析) 題型:解答題
九年級上冊的教材第118頁有這樣一道習(xí)題:
“在一塊三角形余料ABC中,它的邊BC=120mm,高線AD=80mm.要把它加工成正方形零件(如圖),使正方形的一邊在BC上,其余兩個頂點分別在AB,AC上.問加工成的正方形零件的邊長為多少mm?”
(1)請你解答上題;
(2)若將上題圖中的正方形PQMN改為矩形,其余條件不變,求矩形PQMN的面積S的最大值;
(3)我們把上面習(xí)題中的正方形PQMN叫做“BC邊上的△ABC的內(nèi)接正方形”,若在習(xí)題的條件下,又知AB=150mm,AC=100mm,請分別寫出AB邊上的△ABC的內(nèi)接正方形的邊長和AC邊上的△ABC的內(nèi)接正方形的邊長(不必寫出過程,只要直接寫出答案即可,結(jié)果精確到1mm);
(4)結(jié)合第(1)、(3)題,若三角形的三邊長分別為a,b,c,各邊上的高分別為ha,hb,hc,要使a邊上的三角形內(nèi)接正方形的面積最大,請寫出a與ha必須滿足的條件(不必寫出過程).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2012年浙江省杭州市育才中學(xué)中考數(shù)學(xué)模擬試卷(解析版) 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com