某縣一家小型放映廳的盈利額y(元)與銷(xiāo)售票數(shù)x(張)之間的關(guān)系如圖所示,其中保險(xiǎn)部門(mén)規(guī)定:超過(guò)150人時(shí),要繳納公安消防保險(xiǎn)費(fèi)50元.試根據(jù)關(guān)系圖,回答下利問(wèn)題;
(1)試求0≤x≤150和150<x≤200,分別寫(xiě)出盈利額(y)元與x(張)之間的函數(shù)關(guān)系式;
(2)當(dāng)售出的票數(shù)x為何值時(shí),此放影廳不賠不賺?當(dāng)售出的票數(shù)x滿(mǎn)足何值時(shí),此放影廳要賠本?當(dāng)售出的票數(shù)x為何值時(shí),此放影廳能賺錢(qián)?
(3)當(dāng)售出的票數(shù)x為何值時(shí),此時(shí)所獲得的利潤(rùn)比x=150時(shí)多?
分析:(1)根據(jù)0≤x≤150和150<x≤200,分段設(shè)一次函數(shù)解析式,利用待定系數(shù)法求一次函數(shù)解析式;
(2)當(dāng)0≤x≤150時(shí),一次函數(shù)圖象與x軸相交,根據(jù)交點(diǎn)坐標(biāo),可求不賠不賺,賠本,賺錢(qián),三種情況的x取值范圍;
(3)x=150時(shí),y=100,把y=100代入150<x≤200的函數(shù)式,求x的值,再求利潤(rùn)比x=150多時(shí),x的取值范圍.
解答:解:(1)當(dāng)0≤x≤150時(shí),設(shè)線段解析式為y=ax+b,
把(0,-200),(150,100)代入,
b=-200
150a+b=100
,
解得
a=2
b=-200
,
所以,y=2x-200,
當(dāng)150<x≤200時(shí),設(shè)線段解析式為y=mx+n,
把(150,50),(200,200)代入,
150m+n=50
200m+n=200
,
解得
m=3
n=-400
,
所以,y=3x-400;

(2)由y=2x-200,令y=0得x=100,
所以,當(dāng)售出的票數(shù)100張時(shí),此放影廳不賠不賺,
當(dāng)售出的票數(shù)滿(mǎn)足0≤x<100時(shí),此放影廳要賠本,
當(dāng)售出的票數(shù)x>100時(shí),此放影廳能賺錢(qián);

(3)把y=100代入y=3x-400中,
得3x-400=100,
解得x=166
2
3
,
∴當(dāng)售出的票數(shù)大于166
2
3
小于等于200且為整數(shù)時(shí),所獲得的利潤(rùn)比x=150時(shí)多.
點(diǎn)評(píng):本題考查了一次函數(shù)的應(yīng)用.主要考查用待定系數(shù)法求一次函數(shù)關(guān)系式,并會(huì)用一次函數(shù)研究實(shí)際問(wèn)題,具備在直角坐標(biāo)系中的讀圖能力.注意自變量的取值范圍不能遺漏.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

某縣一家小型放映廳的盈利額y(元)與銷(xiāo)售票數(shù)x(張)之間的關(guān)系如圖所示,其作业宝中保險(xiǎn)部門(mén)規(guī)定:超過(guò)150人時(shí),要繳納公安消防保險(xiǎn)費(fèi)50元.試根據(jù)關(guān)系圖,回答下利問(wèn)題;
(1)試求0≤x≤150和150<x≤200,分別寫(xiě)出盈利額(y)元與x(張)之間的函數(shù)關(guān)系式;
(2)當(dāng)售出的票數(shù)x為何值時(shí),此放影廳不賠不賺?當(dāng)售出的票數(shù)x滿(mǎn)足何值時(shí),此放影廳要賠本?當(dāng)售出的票數(shù)x為何值時(shí),此放影廳能賺錢(qián)?
(3)當(dāng)售出的票數(shù)x為何值時(shí),此時(shí)所獲得的利潤(rùn)比x=150時(shí)多?

查看答案和解析>>

同步練習(xí)冊(cè)答案