【題目】為迎接十二運(yùn),某校開設(shè)了A:籃球,B:毽球,C:跳繩,D:健美操四種體育活動,為了解學(xué)生對這四種體育活動的喜歡情況,在全校范圍內(nèi)隨機(jī)抽取若干名學(xué)生,進(jìn)行問卷調(diào)查(每個(gè)被調(diào)查的同學(xué)必須選擇而且只能在4中體育活動中選擇一種).將數(shù)據(jù)進(jìn)行整理并繪制成以下兩幅統(tǒng)計(jì)圖(未畫完整).


(1)這次調(diào)查中,一共查了名學(xué)生;
(2)請補(bǔ)全兩幅統(tǒng)計(jì)圖;

【答案】
(1)200
解答:調(diào)查的總學(xué)生是 =200(名);故答案為:200.
(2)

B所占的百分比是1-15%-20%-30%=35%,C的人數(shù)是:200×30%=60(名),

補(bǔ)圖如下:


【解析】(1)根據(jù)A類的人數(shù)和所占的百分比,求出總?cè)藬?shù);(2)用整體1減去A、C、D類所占的百分比,求出B所占的百分比;用總?cè)藬?shù)乘以所占的百分比,求出C的人數(shù),由此補(bǔ)全圖形.
【考點(diǎn)精析】本題主要考查了扇形統(tǒng)計(jì)圖和條形統(tǒng)計(jì)圖的相關(guān)知識點(diǎn),需要掌握能清楚地表示出各部分在總體中所占的百分比.但是不能清楚地表示出每個(gè)項(xiàng)目的具體數(shù)目以及事物的變化情況;能清楚地表示出每個(gè)項(xiàng)目的具體數(shù)目,但是不能清楚地表示出各個(gè)部分在總體中所占的百分比以及事物的變化情況才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】點(diǎn)P(﹣7,3)是由點(diǎn)M先向左平移動3個(gè)單位,再向下平移動3個(gè)單位而得到,則M的坐標(biāo)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列運(yùn)算正確的是(

A.m2+m22m2B.mn)(nm)=n2m2

C.(﹣2mn2=﹣4m2n2D.2m3÷m32

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知AB∥x軸,A點(diǎn)的坐標(biāo)為(3,2),且AB=4,則B點(diǎn)的坐標(biāo)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為保證中小學(xué)生每天鍛煉一小時(shí),某校開展了形式多樣的體育活動項(xiàng)目,小明對某班同學(xué)參加鍛煉的情況進(jìn)行了統(tǒng)計(jì),并繪制了下面的統(tǒng)計(jì)圖(1)和圖(2).
圖(1)

圖(2)
(1)請根據(jù)所給信息在圖(1)中將表示“乒乓球”項(xiàng)目的圖形補(bǔ)充完整。
(2)扇形統(tǒng)計(jì)圖(2)中表示“足球”項(xiàng)目扇形的圓心角度數(shù)為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AC是矩形ABCD的對角線,過AC的中點(diǎn)O作EFAC,交BC于點(diǎn)E,交AD于點(diǎn)F,連接AE,CF.

(1)求證:四邊形AECF是菱形;

(2)若AB=,DCF=30°,求四邊形AECF的面積.(結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】比-21的數(shù)是(

A.3B.1C.3D.1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】點(diǎn)P1(﹣1,y1),P2(3,y2),P3(5,y3)均在二次函數(shù)y=﹣x2+2x+c的圖象上,則y1 , y2 , y3的大小關(guān)系是(  )
A.y3>y2>y1
B.y3>y1=y2
C.y1>y2>y3
D.y1=y2>y3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C.

(1)求點(diǎn)A,B,C的坐標(biāo);

(2)點(diǎn)E是此拋物線上的點(diǎn),點(diǎn)F是其對稱軸上的點(diǎn),求以A,B,E,F(xiàn)為頂點(diǎn)的平行四邊形的面積;

(3)此拋物線的對稱軸上是否存在點(diǎn)M,使得△ACM是等腰三角形?若存在,請求出點(diǎn)M的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案