【題目】如圖,在△ABC中,AB=6cm,AC=8cm,BC=10cm,P為邊BC上一動點,PE⊥AB于E,PF⊥AC于F,連接EF,則EF的最小值為_______cm.
【答案】4.8;
【解析】
連接AP,先利用勾股定理的逆定理證明△ABC為直角三角形,∠BAC=90°,再證明四邊形AEPF為矩形,則AP=EF,當AP的值最小時,EF的值最小,利用垂線段最短得到AP⊥BC時,AP的值最小,然后利用面積法計算此時AP的長即可.
解:
連接AP,
∵AB=6cm,AC=8cm,BC=10cm,
∴AB2+AC2=BC2,
∴△ABC是直角三角形,
∴∠BAC=90°,
又∵PE⊥AB,PF⊥AC,
∴四邊形AEPF是矩形,
∴AP=EF,
當AP⊥BC時,EF的值最小,
SABC=AB×AC=BC×AP
則:×6×8=×10×AP,
解得AP=4.8cm.
∴EF的最小值是4.8cm.
答案為4.8.
科目:初中數(shù)學 來源: 題型:
【題目】在一個不透明的盒子中裝有大小和形狀相同的3個紅球和2個白球,把它們充分攪勻.
(1)“從中任意抽取1個球不是紅球就是白球”是 事件,“從中任意抽取1個球是黑球”是 事件;
(2)從中任意抽取1個球恰好是紅球的概率是 ;
(3)學校決定在甲、乙兩名同學中選取一名作為學生代表發(fā)言,制定如下規(guī)則:從盒子中任取兩個球,若兩球同色,則選甲;若兩球異色,則選乙.你認為這個規(guī)則公平嗎?請用列表法或畫樹狀圖法加以說明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線與x軸交于A、B兩點,與y軸交于點C,已知A(–1,0),且直線BC的解析式為y=x-2,作垂直于x軸的直線,與拋物線交于點F,與線段BC交于點E(不與點B和點C重合).
(1)求拋物線的解析式;
(2)若△CEF是以CE為腰的等腰三角形,求m的值;
(3)點P為y軸左側(cè)拋物線上的一點,過點P作交直線BC于點M,連接PB,若以P、M、B為頂點的三角形與△ABC相似,求P點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線與x軸交于點與y軸交于點C,拋物線經(jīng)過點B,C,與x軸的另一個交點為A.
(1)求拋物線的解析式;
(2)點P是直線下方拋物線上一動點,求四邊形面積最大時點P的坐標;
(3)若M是拋物線上一點,且,請直接寫出點M的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為響應垃圾分類處理,改善生態(tài)環(huán)境的號召,某小區(qū)將生活垃圾分成四類:廚余垃圾、可回收垃圾、不可回收垃圾、有害垃圾,分別記為a、b、c、并且設(shè)置了相應的垃圾箱:“廚余垃圾”箱,“可回收垃圾”箱,“不可回收垃圾”箱,“有害垃圾”箱,分別記為A,B,C,D.
如果將一袋有害垃圾任意投放進垃圾箱,則投放正確的概率是________.
小明將家里的廚余垃圾、可回收垃圾分裝在兩個袋中,任意投放在其中兩個垃圾箱中,用畫樹狀圖或列表的方法求這兩袋垃圾都投放正確的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為積極響應政府提出的“綠色發(fā)展·低碳出行”號召,某社區(qū)決定購置一批共享單車,經(jīng)市場調(diào)查得知,購買3量男式單車與4輛女式單車費用相同,購買5輛男式單車與4輛女式單車共需16000元.
(1)求男式單車和女式單車的單價;
(2)該社區(qū)要求男式單比女式單車多4輛,兩種單車至少需要22輛,購置兩種單車的費用不超過50000元,該社區(qū)有幾種購置方案?怎樣購置才能使所需總費用最低,最低費用是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,l是經(jīng)過A(2,0),B(0,b)兩點的直線,且b0,點C的坐標為(2,0),當點B移動時,過點C作CD⊥l交于點D.
(1)求點D,O之間的距離;
(2)當tan∠CDO=時,求直線l的解析式;
(3)在(2)的條件下,直接寫出△ACD與△AOB重疊部分的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,設(shè)拋物線y=ax2+bx+c與x軸交于兩個不同的點A(﹣1,0),B(m,0),與y軸交于點C(0,﹣2),且∠ACB=90度.
(1)求m的值和拋物線的解析式;
(2)已知點D(1,n)在拋物線上,過點A的直線y=x+1交拋物線于另一點E,求點D和點E的坐標;
(3)在x軸上是否存在點P,使以點P,B,D為頂點的三角形與三角形AEB相似?若存在,請求出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是某路燈在鉛垂面內(nèi)的示意圖,燈柱BC的高為10米,燈柱BC與燈桿AB的夾角為120°.路燈采用錐形燈罩,在地面上的照射區(qū)域DE的長為13.3米,從D、E兩處測得路燈A的仰角分別為α和45°,且tanα=6.求燈桿AB的長度.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com