精英家教網 > 初中數學 > 題目詳情

作业宝如圖,△ABC是等邊三角形,點D、E分別在邊AB、AC上,且AD=CE,BE和CD相交于點F.
(1)求證:△ACD≌△CBE
(2)求∠BFC的度數.

(1)證明:∵△ABC是等邊三角形,
∴∠A=∠BCE=60°,AC=BC,
在△ACD和△CBE中,

∴△ACD≌△CBE;
(2)∵△ACD≌△CBE,
∴∠ACD=∠CBE,
而∠ACD+∠FCB=60°,
∴∠CBE+∠FCB=60°,
∴∠BFC=180°-(∠CBE+∠FCB)=180°-60°=120°.
分析:(1)根據等邊三角形的性質得到∠A=∠BCE=60°,AC=BC,而AD=CE,根據全等三角形的判定得到△ACD≌△CBE;
(2)根據全等三角形的性質由△ACD≌△CBE得到∠ACD=∠CBE,而∠ACD+∠FCB=60°,則∠CBE+∠FCB=60°,根據三角形的內角和定理即可得到∠BFC的度數.
點評:本題考查了全等三角形的判定與性質:有兩組對應邊相等,并且它們的夾角也相等的兩個三角形全等;全等三角形的對應角相等.也考查了等邊三角形的性質.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

如圖,△ABC是等邊三角形,⊙O過點B,C,且與BA,CA的延長線分別交于點D,E,弦DF精英家教網∥AC,EF的延長線交BC的延長線于點G.
(1)求證:△BEF是等邊三角形;
(2)若BA=4,CG=2,求BF的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

9、如圖,△ABC是等邊三角形,過AB邊上一點D作BC的平行線交AC于E,則△ADE的三個內角
等于60度.(填“都”、“不都”或“都不”)

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖,△ABC是等邊三角形,AB=4cm,則BC邊上的高AD等于
 
cm.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,△ABC是等邊三角形,D為BC邊上的點,∠BAD=15°,將△ABD繞點A點逆時針方向旋轉后到達△ACE的位置,那么旋轉角的度數是
60°
60°

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,△ABC是等邊三角形,CE是外角平分線,點D在AC上,連結BD并延長與CE交于點E.
(1)直接寫出∠ECF的度數等于
60
60
°;
(2)求證:△ABD∽△CED;
(3)若AB=12,AD=2CD,求BE的長.

查看答案和解析>>

同步練習冊答案