(2008•武漢)某商品的進價為每件30元,現(xiàn)在的售價為每件40元,每星期可賣出150件.市場調(diào)查反映:如果每件的售價每漲1元(售價每件不能高于45元),那么每星期少賣10件.設(shè)每件漲價x元(x為非負整數(shù)),每星期的銷量為y件.
(1)求y與x的函數(shù)關(guān)系式及自變量x的取值范圍;
(2)如何定價才能使每星期的利潤最大且每星期的銷量較大?每星期的最大利潤是多少?
【答案】分析:根據(jù)題意可得到函數(shù)關(guān)系式,并得到x的取值范圍.再得到總利潤的函數(shù)式,兩個式子結(jié)合起來,可得到定價.
解答:解:(1)由題意,y=150-10x,0≤x≤5且x為整數(shù);
(2)設(shè)每星期的利潤為w元,
則w=(40+x-30)y
=(x+10)(150-10x)
=-10(x-2.5)2+1562.5
∵x為非負整數(shù),
∴當x=2或3時,利潤最大為1560元,
又∵銷量較大,
∴x=2,即當售價為42元時,每周的利潤最大且銷量較大,最大利潤為1560元.
點評:利用了二次函數(shù)的性質(zhì),以及總利潤=售價×銷量.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2008年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(04)(解析版) 題型:解答題

(2008•武漢)某商品的進價為每件30元,現(xiàn)在的售價為每件40元,每星期可賣出150件.市場調(diào)查反映:如果每件的售價每漲1元(售價每件不能高于45元),那么每星期少賣10件.設(shè)每件漲價x元(x為非負整數(shù)),每星期的銷量為y件.
(1)求y與x的函數(shù)關(guān)系式及自變量x的取值范圍;
(2)如何定價才能使每星期的利潤最大且每星期的銷量較大?每星期的最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2008年全國中考數(shù)學(xué)試題匯編《一次函數(shù)》(06)(解析版) 題型:解答題

(2008•武漢)某商品的進價為每件30元,現(xiàn)在的售價為每件40元,每星期可賣出150件.市場調(diào)查反映:如果每件的售價每漲1元(售價每件不能高于45元),那么每星期少賣10件.設(shè)每件漲價x元(x為非負整數(shù)),每星期的銷量為y件.
(1)求y與x的函數(shù)關(guān)系式及自變量x的取值范圍;
(2)如何定價才能使每星期的利潤最大且每星期的銷量較大?每星期的最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年江蘇省南京市浦口區(qū)中考數(shù)學(xué)二模試卷(解析版) 題型:解答題

(2008•武漢)某商品的進價為每件30元,現(xiàn)在的售價為每件40元,每星期可賣出150件.市場調(diào)查反映:如果每件的售價每漲1元(售價每件不能高于45元),那么每星期少賣10件.設(shè)每件漲價x元(x為非負整數(shù)),每星期的銷量為y件.
(1)求y與x的函數(shù)關(guān)系式及自變量x的取值范圍;
(2)如何定價才能使每星期的利潤最大且每星期的銷量較大?每星期的最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年山東省濟南市省實驗中學(xué)中考數(shù)學(xué)模擬試卷(一)(解析版) 題型:解答題

(2008•武漢)某商品的進價為每件30元,現(xiàn)在的售價為每件40元,每星期可賣出150件.市場調(diào)查反映:如果每件的售價每漲1元(售價每件不能高于45元),那么每星期少賣10件.設(shè)每件漲價x元(x為非負整數(shù)),每星期的銷量為y件.
(1)求y與x的函數(shù)關(guān)系式及自變量x的取值范圍;
(2)如何定價才能使每星期的利潤最大且每星期的銷量較大?每星期的最大利潤是多少?

查看答案和解析>>

同步練習(xí)冊答案