【題目】如圖,在平面直角坐標系中,直線與軸交于點,與反比例函數(shù)的圖象交于點和點.
(1)求的值及點的坐標;
(2)若點是軸上一點,且,直接寫出點的坐標.
【答案】(1);(2)或
【解析】
(1)將點的坐標代入中,求出直線l的解析式,根據(jù)題意,令y=0,求得,進而求出C點坐標,再將點的坐標代入中即可求出k的值;
(2)先求出點B的坐標,再根據(jù)題意將△ABP的面積進行分割,即S△ABP=S△ACP+S△BCP然后設點P的橫坐標為x,最后將根據(jù)三角形面積公式將數(shù)據(jù)代入即可求解.
解:(1)將點的坐標代入中,
得,解得.
在中,令,得,
∴點的坐標為.
將點的坐標代入中,
得.
(2)∵直線l:和反比例函數(shù)交于A、B兩點
令,
解得:
將代入反比例函數(shù)得:
∴點B的坐標(﹣4,﹣1),
∵AB交x軸于點C
∴S△ABP=S△ACP+S△BCP
設點P的橫坐標為x,則 ,
解得:x=﹣5或x=﹣1
∴此時點或點.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點A、B的坐標分別為(3,2)、(﹣1,0),若將線段BA繞點B順時針旋轉(zhuǎn)90°得到線段BA′,則點A′的坐標為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,A、B兩點的坐標分別為(﹣4,0),(0,4),C、F分別是直線x=6和x軸上的動點,CF=12,D是CF的中點,連接AD交y軸與點E,△ABE面積的最小值為_____cm.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,拋物線y=m與y軸交于點C,與x軸交于點A和點B(其中點A在y軸左側(cè),點B在y軸右側(cè)).
(1)若拋物線y=m的對稱軸為直線x=1,求拋物線的解析式;
(2)如圖1,∠ACB=90°,點P是拋物線y=m上的一點,若S△BCP=,求點P的坐標;
(3)如圖2,過點A作AD∥BC交拋物線于點D,若點D的縱坐標為﹣m,求直線AD的解析式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】定義:有一組鄰邊均和一條對角線相等的四邊形叫做鄰和四邊形.
(1)如圖1,四邊形ABCD中,∠ABC=70°,∠BAC=40°,∠ACD=∠ADC=80°,求證:四邊形ABCD是鄰和四邊形.
(2)如圖2,是由50個小正三角形組成的網(wǎng)格,每個小正三角形的頂點稱為格點,已知A,B,C三點的位置如圖,請在網(wǎng)格圖中標出所有的格點D,使得以A,B,C,D為頂點的四邊形為鄰和四邊形.
(3)如圖3,△ABC中,∠ABC=90°,AB=4,BC=4,若存在一點D,使四邊形ABCD是鄰和四邊形,求鄰和四邊形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】對于平面直角坐標系中的點和圖形,給出如下定義:若圖形上存在兩個點,使得是邊長為2的等邊三角形,則稱點是圖形的一個“和諧點”.
已知直線與軸交于點,與軸交于點的半徑為.
(1)若,在點中,直線的和諧點是___________;
(2)若上恰好存在2個直線的和諧點,求的取值范圍;
(3)若,線段上存在的和諧點,直接寫出的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:正方形ABCD中,∠MAN=45°,∠MAN繞點A順時針旋轉(zhuǎn),它的兩邊分別交CB、DC(或它們的延長線)于點M、N.
(1)當∠MAN繞點A旋轉(zhuǎn)到BM=DN時(如圖1),請你直接寫出BM、DN和MN的數(shù)量關(guān)系:__________.
(2)當∠MAN繞點A旋轉(zhuǎn)到BM≠DN時(如圖2),(1)中的結(jié)論是否仍然成立?若成立,請給予證明;若不成立,請你寫出正確結(jié)論再給予證明.
(3)當∠MAN繞點A旋轉(zhuǎn)到如圖3的位置時,線段BM、DN和MN之間又有怎樣的數(shù)量關(guān)系?請寫出直接寫出結(jié)論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠CAB=120°,AB=AC=3,點E是三角形ABC 內(nèi)一點,且滿足則點E 在運動過程中所形成的圖形的長為 ( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB為⊙O的直徑,P為BA延長線上一點,點C在⊙O上,連接PC,D為半徑OA上一點,PD=PC,連接CD并延長交⊙O于點E,且E是的中點.
(1)求證:PC是⊙O的切線;
(2)求證:CDDE=2ODPD;
(3)若AB=8,CDDE=15,求PA的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com