下列函數(shù)中,y隨x增大而減小的是( )
A.y=-
B.y=
C.y=-(x>0)
D.y=(x<0)
【答案】分析:分別根據(jù)反比例函數(shù)的性質(zhì)對各選項進行逐一分析即可.
解答:解:A、∵函數(shù)y=-中,k=-1<0,∴y隨x的增大而增大,故本選項錯誤;
B、∵函數(shù)y=中,k=2>0,∴y隨x的增大而減小,故本選項正確;
C、∵函數(shù)y=-中,k=-3<0,∴y隨x的增大而增大,故本選項錯誤;
D、∵函數(shù)y=(x<0)中,k=4>0,x<0函數(shù)圖象在第四象限內(nèi)y隨x的增大而減小,故本選項錯誤.
故選B.
點評:本題考查的是反比例函數(shù)的性質(zhì),
(1)反比例函數(shù)y=(k≠0)的圖象是雙曲線;
(2)當k>0,雙曲線的兩支分別位于第一、第三象限,在每一象限內(nèi)y隨x的增大而減;
(3)當k<0,雙曲線的兩支分別位于第二、第四象限,在每一象限內(nèi)y隨x的增大而增大.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)函數(shù)y1=-x(x≤0),y2=-
4
x
(x<0)的圖象如圖所示,則下列說法中錯誤的是( 。
A、兩函數(shù)的圖象的交點A的坐標為(-2,2)
B、當x>-2時,有y1>y2
C、當x=-1時,BC=3
D、當x逐漸增大時,y1隨x的增大而增小,y2隨x的增大而減大

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:閱讀理解

先閱讀下面材料,再回答問題.
一般地,如果函數(shù)y的自變量x在a<x<b范圍內(nèi),對于任意x1,x2,當a<x1<x2<b時,總是有y1<y2(yn是與xn對應的函數(shù)值),那么就說函數(shù)y在a<x<b范圍內(nèi)是增函數(shù).
例如:函數(shù)y=x2在正實數(shù)范圍內(nèi)是增函數(shù).
證明:在正實數(shù)范圍內(nèi)任取x1,x2,若x1<x2,
則y1-y2=x12-x22=( x1-x2)( x1+x2
因為x1>0,x2>0,x1<x2
所以x1+x2>0,x1-x2<0,( x1-x2)( x1+x2)<0
即y1-y2<0,亦即y1<y2,也就是當x1<x2時,y1<y2
所以函數(shù)y=x2在正實數(shù)范圍內(nèi)是增函數(shù).
問題:
(1)下列函數(shù)中.①y=-2x(x為全體實數(shù));②y=-
2
x
(x>0);③y=
1
x
(x>0);在給定自變量x的取值范圍內(nèi),是增函數(shù)的有

(2)對于函數(shù)y=x2-2x+1,當自變量x
>1
>1
時,函數(shù)值y隨x的增大而增大.
(3)說明函數(shù)y=-x2+4x,當x<2時是增函數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

先閱讀下面材料,再回答問題.
一般地,如果函數(shù)y的自變量x在a<x<b范圍內(nèi),對于任意x1,x2,當a<x1<x2<b時,總是有y1<y2(yn是與xn對應的函數(shù)值),那么就說函數(shù)y在a<x<b范圍內(nèi)是增函數(shù).
例如:函數(shù)y=x2在正實數(shù)范圍內(nèi)是增函數(shù).
證明:在正實數(shù)范圍內(nèi)任取x1,x2,若x1<x2,
則y1-y2=x12-x22=( x1-x2)( x1+x2
因為x1>0,x2>0,x1<x2
所以x1+x2>0,x1-x2<0,( x1-x2)( x1+x2)<0
即y1-y2<0,亦即y1<y2,也就是當x1<x2時,y1<y2
所以函數(shù)y=x2在正實數(shù)范圍內(nèi)是增函數(shù).
問題:
(1)下列函數(shù)中.①y=-2x(x為全體實數(shù));②數(shù)學公式(x>0);③數(shù)學公式(x>0);在給定自變量x的取值范圍內(nèi),是增函數(shù)的有______.
(2)對于函數(shù)y=x2-2x+1,當自變量x______時,函數(shù)值y隨x的增大而增大.
(3)說明函數(shù)y=-x2+4x,當x<2時是增函數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

先閱讀下面材料,再回答問題.
一般地,如果函數(shù)y的自變量x在a<x<b范圍內(nèi),對于任意x1,x2,當a<x1<x2<b時,總是有y1<y2(yn是與xn對應的函數(shù)值),那么就說函數(shù)y在a<x<b范圍內(nèi)是增函數(shù).
例如:函數(shù)y=x2在正實數(shù)范圍內(nèi)是增函數(shù).
證明:在正實數(shù)范圍內(nèi)任取x1,x2,若x1<x2,
則y1-y2=x12-x22=( x1-x2)( x1+x2
因為x1>0,x2>0,x1<x2
所以x1+x2>0,x1-x2<0,( x1-x2)( x1+x2)<0
即y1-y2<0,亦即y1<y2,也就是當x1<x2時,y1<y2
所以函數(shù)y=x2在正實數(shù)范圍內(nèi)是增函數(shù).
問題:
(1)下列函數(shù)中.①y=-2x(x為全體實數(shù));②y=-
2
x
(x>0);③y=
1
x
(x>0);在給定自變量x的取值范圍內(nèi),是增函數(shù)的有______.
(2)對于函數(shù)y=x2-2x+1,當自變量x______時,函數(shù)值y隨x的增大而增大.
(3)說明函數(shù)y=-x2+4x,當x<2時是增函數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

函數(shù)≤0),<0)的圖象如圖所示,則下列說法中錯誤的是(      )

A.兩函數(shù)的圖象的交點A的坐標為(-2,2)       B.當>-2時,有              

C.當=-1時,BC=3                 D.當逐漸增大時,的增大而增小,的增大而減大。

     

查看答案和解析>>

同步練習冊答案