閱讀下列材料,然后回答問題.在進行二次根式去除時,我們有時會碰上如
5
3
,
2
3
,
2
3
+1
一樣的式子,其實我們還可以將其進一步化簡:
5
3
=
5
5
×
5
=
3
5
5
(一)
2
3
=
2×3
3×3
=
6
3
2
3
=
2×3
3×3
=
6
3
(二)
2
3
+1
=
2×(
3
-1)
(
3
+1)(
3
-1)
=
2(
3
-1)
(
3
)
2
-12
=
3
-1
(三)
以上這種化簡的步驟叫做分母有理化.
2
3
+1
2
3
+1
還可以用以下方法化簡:
2
3
+1
=
3-1
3
+1
=
(
3
)
2
-12
3
+1
=
(
3
+1)(
3
-1)
3
+1
=
3
-1

2
3
+1
=
3-1
3
+1
=
(
3
)
2
-12
3
+1
=
(
3
+1)(
3
-1)
3
+1
=
3
-1
(四)
(1)化簡
2
5
+
3

①參照(三)式得
2
5
+
3
=
 
;
②參照(四)式得
2
5
+
3
=
 

(2)化簡:
1
3
+1
+
1
5
+
3
+
1
7
+
5
+…+
1
2n+1
+
2n-1
分析:(1)①分子分母同時乘以有理化因式
5
-
3
,即可化簡;
②把分子2寫成5-3,然后利用平方差公式分解,即可化簡;
(2)根據(jù)上面的例子即可進行化簡.
解答:解:(1)①原式=
2(
5
-
3
)
(
5
+
3
)(
5
-
3
)
=
2(
5
-
3
)
2
=
5
-
3
;
②原式=
5-3
5
+
3
=
(
5
+
3
)(
5
-
3
)
5
+
3
=
5
-
3

(2)原式=
1
2
3
-1+
5
-
3
+
7
-
5
+…+
2n+1
-
2n-1
)=
1
2
2n+1
-1)=
2n+1
2
-
1
2
點評:本題主要考查了二次根式的化簡求值,正確讀題,理解已知條件是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

先閱讀下列材料,然后解答問題:
材料:結(jié)合具體的數(shù),通過特例探究當(dāng)a>0時,a與
1
a
的大。
解:當(dāng)a>1時,取a=2,則2>
1
2
;  取a=
3
2
,則
3
2
2
3
;…,所以a>
1
a

當(dāng)a=1時,a=
1
a

當(dāng)0<a<1時,取a=
1
2
,則
1
2
<2;取a=
2
3
,則
2
3
3
2
;…,所以a<
1
a

綜上,當(dāng)a>1時,a>
1
a
;當(dāng)a=1時,a=
1
a
;當(dāng)0<a<1時,a<
1
a

問題:結(jié)合具體的數(shù),通過特例探究當(dāng)a<0時,a與
1
a
的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀下列材料,然后回答問題.
在進行二次根式化簡時,我們有時會碰上如
2
5
2
3
2
3
+1
一樣的式子,其實我們還可以將其進一步化簡:
2
5
=
5
5
×
5
=
2
5
5
;(一)
2
3
=
2×3
3×3
=
6
3
;(二)
2
3
+1
=
2×(
3
-1)
(
3
+1)(
3
-1)
=
2(
3
-1)
(
3
)2-12
=
3
-1。ㄈ
以上這種化簡的步驟叫做分母有理化.
2
3
+1
還可以用以下方法化簡:
2
3
+1
=
3-1
3
+1
=
(
3
)2-12
3
+1
=
(
3
+1)(
3
-1)
3
+1
=
3
-1(四)
(1)請用以下指定的方法化簡
2
2009
+
2007
(2).
參照(三)式化簡
2
2009
+
2007

參照(四)式化簡
2
2009
+
2007

(2)化簡:
1
3
+1
+
1
5
+
3
+
1
7
+
5
+…+
1
2n+1
+
2n-1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

閱讀下列材料,然后回答問題.
在進行二次根式運算時,形如
2
3
-1
一樣的式子,我們可以將其進一步化簡:
2
3
-1
=
2×(
3
+1)
(
3
-1)(
3
+1)
=
2(
3
+1)
3-1
=
3
+1

以上這種化簡的步驟叫做分母有理化.
(1)請用上述的方法化簡
2
5
-
3

(2)化簡:
4
2
+2
+
4
2+
6
+
4
6
+
8
+
+
4
2n
+
2n+2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀下列材料,然后回答問題.
在進行二次根式計算時,我們有時會碰到如
5
3
,
2
3
,
2
3
+1
一樣的式子,其實我們還可以將其進一步簡化:
5
3
=
3
3
×
3
=
5
3
3
          ①
2
3
=
2×3
3×3
=
6
3
             ②
2
3
+1
=
2(
3
-1)
(
3
+1)(
3
-1)
=
2(
3
-1)
(
3
)
2
-
1
2
 
=
2(
3
-1)
2
=
3
-1
      ③
以上這種化簡的步驟叫做分母有理化,
2
3
+1
還可以用以下方法化簡:
2
3
+1
=
3-1
3
+1
=
(
3
)
2
-12
3
+1
=
3
-1
     ④
(1)請用不同的方法化簡:
2
7
+
5

參照③式方法化簡過程為:
參照④式方法化簡過程為:
(2)化簡:
2
3
+1
+
2
5
+
3
+
2
7
+
5
+…+
2
2n+1
+
2n-1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

(2013•梅州模擬)仔細閱讀下列材料,然后解答問題.
某商場在促銷期間規(guī)定:商場內(nèi)所有商品按標價的80%出售.同時當(dāng)顧客在該商場消費滿一定金額后,按如下方案獲得相應(yīng)金額的獎券:
消費金額a(元)的范圍 200≤a<400 400≤a<500 500≤a<700 700≤a<900
獲得獎卷的金額(元) 30 60 100 130
根據(jù)上述促銷方法,顧客在商場內(nèi)購物可以獲得雙重優(yōu)惠.例如,購買標價為450元的商品,則消費金額為450×80%=360元,獲得的優(yōu)惠額為450×(1-80%)+30=120元.設(shè)購買該商品得到的優(yōu)惠率=購買商品獲得的優(yōu)惠額÷商品的標價.
(1)購買一件標價為1000元的商品,顧客得到的優(yōu)惠率是多少?
(2)對于標價在500元與800元之間(含500元和800元)的商品,顧客購買標價為多少元的商品,可以得到
1
3
的優(yōu)惠率?

查看答案和解析>>

同步練習(xí)冊答案