作業(yè)寶二次函數(shù)y=ax2+bx+c的圖象如圖所示.有下列結(jié)論:
①b2-4ac<0;②ab>0;③a-b+c=0;
④4a+b=0;⑤當(dāng)y=2時(shí),x等于0.
⑥ax2+bx+c=0有兩個(gè)不相等的實(shí)數(shù)根
⑦ax2+bx+c=2有兩個(gè)不相等的實(shí)數(shù)根
⑧ax2+bx+c-10=0有兩個(gè)不相等的實(shí)數(shù)根
⑨ax2+bx+c=-4有兩個(gè)不相等的實(shí)數(shù)根
其中正確的是________.

③④⑤⑥⑦⑨
分析:由拋物線的開(kāi)口方向判斷a與0的關(guān)系,由拋物線與y軸的交點(diǎn)判斷c與0的關(guān)系,然后根據(jù)對(duì)稱(chēng)軸及拋物線與x軸交點(diǎn)情況進(jìn)行推理,進(jìn)而對(duì)所得結(jié)論進(jìn)行判斷.
解答:①由圖可知:拋物線與x軸有兩個(gè)交點(diǎn),
∴△=b2-4ac>0,故①錯(cuò)誤;
②由圖可知:拋物線開(kāi)口向下,對(duì)稱(chēng)軸為x=-=2>0
∴a與b異號(hào),即b<0,∴ab<0,故②錯(cuò)誤;
③由圖可知:當(dāng)x=5時(shí),y=0,對(duì)稱(chēng)軸為x=2,
∴拋物線與x軸的另一個(gè)交點(diǎn)的x坐標(biāo)為2-(5-2)=-1,
∴當(dāng)x=-1時(shí),y=a-b+c=0,故③正確;
④拋物線對(duì)稱(chēng)軸為x=-=2,∴4a+b=0,故④正確;
⑤由圖象可知:拋物線與y軸交與(0,2)點(diǎn),即當(dāng)y=2時(shí),x等于0,故⑤正確;
⑥由圖可知:拋物線與x軸有兩個(gè)交點(diǎn),即ax2+bx+c=0有兩個(gè)不相等的實(shí)數(shù)根,故⑥正確;
⑦由圖象可知:拋物線與y軸交與(0,2)點(diǎn),拋物線頂點(diǎn)為(2,3.6),
∴當(dāng)將拋物線向下平移兩個(gè)單位時(shí),仍與x軸有兩個(gè)交點(diǎn),即ax2+bx+c=2有兩個(gè)不相等的實(shí)數(shù)根,故⑦正確;
⑧由圖象可知拋物線頂點(diǎn)為(2,3.6),
∴當(dāng)將拋物線向下平移10個(gè)單位時(shí),仍與x軸沒(méi)有交點(diǎn),即ax2+bx+c-10=0無(wú)實(shí)根,故⑧錯(cuò)誤;
⑨由圖象可知拋物線頂點(diǎn)為(2,3.6),
∴當(dāng)將拋物線向上平移4個(gè)單位時(shí),仍與x軸有兩個(gè)交點(diǎn),即ax2+bx+c=-4有兩個(gè)不相等的實(shí)數(shù)根,故⑨正確.
故答案為③④⑤⑥⑦⑨.
點(diǎn)評(píng):此題主要考查了圖象與二次函數(shù)系數(shù)之間的關(guān)系,會(huì)利用對(duì)稱(chēng)軸的范圍求2a與b的關(guān)系,以及二次函數(shù)與方程之間的轉(zhuǎn)換,根的判別式的熟練運(yùn)用
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,拋物線y=ax2+bx+c(a≠0)與x軸交于A(-3,0)、B兩點(diǎn),與y軸交于精英家教網(wǎng)點(diǎn)C(0,
3
)
,當(dāng)x=-4和x=2時(shí),二次函數(shù)y=ax2+bx+c(a≠0)的函數(shù)值y相等,連接AC、BC.
(1)求實(shí)數(shù)a,b,c的值;
(2)若點(diǎn)M、N同時(shí)從B點(diǎn)出發(fā),均以每秒1個(gè)單位長(zhǎng)度的速度分別沿BA、BC邊運(yùn)動(dòng),其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一點(diǎn)也隨之停止運(yùn)動(dòng),當(dāng)運(yùn)動(dòng)時(shí)間為t秒時(shí),連接MN,將△BMN沿MN翻折,B點(diǎn)恰好落在AC邊上的P處,求t的值及點(diǎn)P的坐標(biāo);
(3)在(2)的條件下,拋物線的對(duì)稱(chēng)軸上是否存在點(diǎn)Q,使得以B,N,Q為頂點(diǎn)的三角形與△ABC相似?若存在,請(qǐng)求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

二次函數(shù)y=ax2+bx+c,當(dāng)x=
12
時(shí),有最大值25,而方程ax2+bx+c=0的兩根α、β,滿足α33=19,求a、b、c.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如果二次函數(shù)y=ax2+bx+c的圖象的頂點(diǎn)坐標(biāo)是(2,4),且直線y=x+4依次與y軸和拋物線相交于P、Q、R三點(diǎn),PQ:QR=1:3,求這個(gè)二次函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖為二次函數(shù)y=ax2+bx+c(a≠0)的圖象,則下列說(shuō)法:①abc>0;②2a+b=0;③a+b+c>0;④當(dāng)-1<x<3時(shí),y>0.其中正確結(jié)論的序號(hào)是
②③④
②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•孝感)二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0)圖象的對(duì)稱(chēng)軸是直線x=1,其圖象的一部分如圖所示.對(duì)于下列說(shuō)法:
①abc<0;②a-b+c<0;③3a+c<0;④當(dāng)-1<x<3時(shí),y>0.
其中正確的是
①②③
①②③
(把正確的序號(hào)都填上).

查看答案和解析>>

同步練習(xí)冊(cè)答案