(2012•重慶)企業(yè)的污水處理有兩種方式,一種是輸送到污水廠進行集中處理,另一種是通過企業(yè)的自身設(shè)備進行處理.某企業(yè)去年每月的污水量均為12000噸,由于污水廠處于調(diào)試階段,污水處理能力有限,該企業(yè)投資自建設(shè)備處理污水,兩種處理方式同時進行.1至6月,該企業(yè)向污水廠輸送的污水量y1(噸)與月份x(1≤x≤6,且x取整數(shù))之間滿足的函數(shù)關(guān)系如下表:
 月份x(月)  1  2  4
 輸送的污水量y1(噸)  12000  6000  4000  3000  2400 2000 
7至12月,該企業(yè)自身處理的污水量y2(噸)與月份x(7≤x≤12,且x取整數(shù))之間滿足二次函數(shù)關(guān)系式為y2=ax2+c(a≠0).其圖象如圖所示.1至6月,污水廠處理每噸污水的費用:z1(元)與月份x之間滿足函數(shù)關(guān)系式:z1=
1
2
x
,該企業(yè)自身處理每噸污水的費用:z2(元)與月份x之間滿足函數(shù)關(guān)系式:z2=
3
4
x-
1
12
x2
;7至12月,污水廠處理每噸污水的費用均為2元,該企業(yè)自身處理每噸污水的費用均為1.5元.
(1)請觀察題中的表格和圖象,用所學(xué)過的一次函數(shù)、反比例函數(shù)或二次函數(shù)的有關(guān)知識,分別直接寫出y1,y2與x之間的函數(shù)關(guān)系式;
(2)請你求出該企業(yè)去年哪個月用于污水處理的費用W(元)最多,并求出這個最多費用;
(3)今年以來,由于自建污水處理設(shè)備的全面運行,該企業(yè)決定擴大產(chǎn)能并將所有污水全部自身處理,估計擴大產(chǎn)能后今年每月的污水量都將在去年每月的基礎(chǔ)上增加a%,同時每噸污水處理的費用將在去年12月份的基礎(chǔ)上增加(a-30)%,為鼓勵節(jié)能降耗,減輕企業(yè)負(fù)擔(dān),財政對企業(yè)處理污水的費用進行50%的補助.若該企業(yè)每月的污水處理費用為18000元,請計算出a的整數(shù)值.
(參考數(shù)據(jù):
231
≈15.2,
419
≈20.5,
809
≈28.4)
分析:(1)利用表格中數(shù)據(jù)可以得出xy=定值,則y1與x之間的函數(shù)關(guān)系為反比例函數(shù)關(guān)系求出即可,再利用函數(shù)圖象得出:圖象過(7,10049),(12,10144)點,求出解析式即可;
(2)利用當(dāng)1≤x≤6時,以及當(dāng)7≤x≤12時,分別求出處理污水的費用,即可得出答案;
(3)利用今年每月的污水量都將在去年每月的基礎(chǔ)上增加a%,同時每噸污水處理的費用將在去年12月份的基礎(chǔ)上增加(a一30)%,得出等式12000(1+a%)×1.5×[1+(a-30)%]×(1-50%)=18000,進而求出即可.
解答:解:(1)根據(jù)表格中數(shù)據(jù)可以得出xy=定值,則y1與x之間的函數(shù)關(guān)系為反比例函數(shù)關(guān)系:
y1=
k
x
,將(1,12000)代入得:
k=1×12000=12000,
故y1=
12000
x
(1≤x≤6,且x取整數(shù));
根據(jù)圖象可以得出:圖象過(7,10049),(12,10144)點,
代入y2=ax2+c(a≠0)得:
10049=49a+c
10144=144a+c
,
解得:
a=1
c=10000
,
故y2=x2+10000(7≤x≤12,且x取整數(shù));

(2)當(dāng)1≤x≤6,且x取整數(shù)時:
W=y1•z1+(12000-y1)•z2=
12000
x
1
2
x+(12000-
12000
x
)•(
3
4
x-
1
12
x2),
=-1000x2+10000x-3000,
∵a=-1000<0,x=-
b
2a
=5,1≤x≤6,
∴當(dāng)x=5時,W最大=22000(元),
當(dāng)7≤x≤12時,且x取整數(shù)時,
W=2×(12000-y2)+1.5y2=2×(12000-x2-10000)+1.5(x2+10000),
=-
1
2
x2+19000,
∵a=-
1
2
<0,x=-
b
2a
=0,
當(dāng)7≤x≤12時,W隨x的增大而減小,
∴當(dāng)x=7時,W最大=18975.5(元),
∵22000>18975.5,
∴去年5月用于污水處理的費用最多,最多費用是22000元;

(3)由題意得:12000(1+a%)×1.5×[1+(a-30)%]×(1-50%)=18000,
設(shè)t=a%,整理得:10t2+17t-13=0,
解得:t=
-17±
809
20
,
809
≈28.4,
∴t1≈0.57,t2≈-2.27(舍去),
∴a≈57,
答:a的值是57.
點評:此題主要考查了二次函數(shù)的應(yīng)用和根據(jù)實際問題列反比例函數(shù)關(guān)系式和二次函數(shù)關(guān)系式、求二次函數(shù)最值等知識.此題閱讀量較大,得出正確關(guān)于a%的等式方程是解題關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

2012年3月23日至3月25日為期3天、以“云聯(lián)世界感知未來”為主題的2012中國(重慶)國際云計算博覽會(下稱云博會)在渝召開,重慶新市委書記張德江說在未來10年內(nèi)重慶實施“云端計劃”建設(shè)智慧重慶. 市委市政府非常重視“云端服務(wù)器”的建設(shè),幾年前就已經(jīng)著手建設(shè)“云端服務(wù)器”,據(jù)統(tǒng)計,某行政區(qū)在去年前7個月內(nèi),“云端服務(wù)器”的數(shù)量與月份之間的關(guān)系如下表:
月份x(月) 1 2 3 4 5 6 7
云端服務(wù)器數(shù)量y1(臺) 32 34 36 38 40 42 44
而由于部分地區(qū)陸續(xù)被劃分到其它行政區(qū),該行政區(qū)8至12月份“云端服務(wù)器”數(shù)量y2(臺)與月份x(月)之間存在如圖所示的變化趨勢:
(1)請觀察表格,用所學(xué)過的一次函數(shù)、反比例函數(shù)或二次函數(shù)的有關(guān)知識,直接寫出y1與x之間的函數(shù)關(guān)系式,根據(jù)如圖所示的變化趨勢,直接寫出y2與x之間滿足的一次函數(shù)關(guān)系式;
(2)在2011年內(nèi),市政府每月對每一臺云端服務(wù)器的資金也隨月份發(fā)生改變,若對每一臺服務(wù)器的投入的資金p1(萬元)與月份x滿足函數(shù)關(guān)系式:p1=-0.5x+10.5,(1≤x≤7,且x為整數(shù));8至12月份的資金投入p2(萬元)與月份x滿足函數(shù)關(guān)系式:p2=0.5x+10(8≤x≤12,且x為整數(shù))求去年哪個月政府對該片區(qū)的資金投入最大,并求出這個最大投入;
(3)2012年1月到3月份,政府計劃該區(qū)的云端服務(wù)器每月的數(shù)量比去年12份減少2a%,在去年12月份的基礎(chǔ)上每月每一臺云端服務(wù)器資金投入量將增加0.5a%,某民營企業(yè)為表示對“智慧重慶”的鼎力支持,決定在1月到3月份對每臺云端服務(wù)器分別贊助3萬元.若計劃1月到3月份用于云端服務(wù)器所需的資金總額(政府+民企贊助)一共達到546萬元,請參考以下數(shù)據(jù),估計a的整數(shù)值.(參考數(shù)據(jù):172=289,182=324,QUOTE 872=7569,882=7744,892=7921)192=361)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

2012年3月23日至3月25日為期3天、以“云聯(lián)世界感知未來”為主題的2012中國(重慶)國際云計算博覽會(下稱云博會)在渝召開,重慶新市委書記張德江說在未來10年內(nèi)重慶實施“云端計劃”建設(shè)智慧重慶. 市委市政府非常重視“云端服務(wù)器”的建設(shè),幾年前就已經(jīng)著手建設(shè)“云端服務(wù)器”,據(jù)統(tǒng)計,某行政區(qū)在去年前7個月內(nèi),“云端服務(wù)器”的數(shù)量與月份之間的關(guān)系如下表:
月份x(月)1234567
云端服務(wù)器數(shù)量y1(臺)32343638404244
而由于部分地區(qū)陸續(xù)被劃分到其它行政區(qū),該行政區(qū)8至12月份“云端服務(wù)器”數(shù)量y2(臺)與月份x(月)之間存在如圖所示的變化趨勢:
(1)請觀察表格,用所學(xué)過的一次函數(shù)、反比例函數(shù)或二次函數(shù)的有關(guān)知識,直接寫出y1與x之間的函數(shù)關(guān)系式,根據(jù)如圖所示的變化趨勢,直接寫出y2與x之間滿足的一次函數(shù)關(guān)系式;
(2)在2011年內(nèi),市政府每月對每一臺云端服務(wù)器的資金也隨月份發(fā)生改變,若對每一臺服務(wù)器的投入的資金p1(萬元)與月份x滿足函數(shù)關(guān)系式:p1=-0.5x+10.5,(1≤x≤7,且x為整數(shù));8至12月份的資金投入p2(萬元)與月份x滿足函數(shù)關(guān)系式:p2=0.5x+10(8≤x≤12,且x為整數(shù))求去年哪個月政府對該片區(qū)的資金投入最大,并求出這個最大投入;
(3)2012年1月到3月份,政府計劃該區(qū)的云端服務(wù)器每月的數(shù)量比去年12份減少2a%,在去年12月份的基礎(chǔ)上每月每一臺云端服務(wù)器資金投入量將增加0.5a%,某民營企業(yè)為表示對“智慧重慶”的鼎力支持,決定在1月到3月份對每臺云端服務(wù)器分別贊助3萬元.若計劃1月到3月份用于云端服務(wù)器所需的資金總額(政府+民企贊助)一共達到546萬元,請參考以下數(shù)據(jù),估計a的整數(shù)值.(參考數(shù)據(jù):172=289,182=324,QUOTE 872=7569,882=7744,892=7921)192=361)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012屆重慶巴蜀中學(xué)九年級中考第五次6月考試押題數(shù)學(xué)試卷(帶解析) 題型:解答題

2012年3月23日至3月25日為期3天、以“云聯(lián)世界感知未來”為主題的2012中國(重慶)國際云計算博覽會(下稱云博會)在渝召開,重慶新市委書記張德江說在未來10年內(nèi)重慶實施“云端計劃” 建設(shè)智慧重慶。 市委市政府非常重視“云端服務(wù)器”的建設(shè),幾年前就已經(jīng)著手建設(shè)“云端服務(wù)器”,據(jù)統(tǒng)計,某行政區(qū)在去年前7個月內(nèi),“云端服務(wù)器”的數(shù)量與月份之間的關(guān)系如下表:

月份x(月)
1
2
3
4
5
6
7
云端服務(wù)器數(shù)量(臺)
32
34
36
38
40
42
44
而由于部分地區(qū)陸續(xù)被劃分到其它行政區(qū),該行政區(qū)8至12月份“云端服務(wù)器”數(shù)量(臺)與月份x(月)之間存在如圖所示的變化趨勢:

(1)請觀察表格,用所學(xué)過的一次函數(shù)、反比例函數(shù)或二次函數(shù)的有關(guān)知識,直接寫出與x之間的函數(shù)關(guān)系式,根據(jù)如圖所示的變化趨勢,直接寫出與x之間滿足的一次函數(shù)關(guān)系式;
(2)在2011年內(nèi),市政府每月對每一臺云端服務(wù)器的資金也隨月份發(fā)生改變,若對每一臺服務(wù)器的投入的資金(萬元)與月份x滿足函數(shù)關(guān)系式: ,(1≤x≤7,且x為整數(shù));8至12月份的資金投入(萬元)與月份x滿足函數(shù)關(guān)系式:(8≤x≤12,且x為整數(shù))求去年哪個月政府對該片區(qū)的資金投入最大,并求出這個最大投入;
(3)2012年1月到3月份,政府計劃該區(qū)的云端服務(wù)器每月的數(shù)量比去年12份減少2a%,在去年12月份的基礎(chǔ)上每月每一臺云端服務(wù)器資金投入量將增加0.5a%,某民營企業(yè)為表示對“智慧重慶”的鼎力支持,決定在1月到3月份對每臺云端服務(wù)器分別贊助3萬元。若計劃1月到3月份用于云端服務(wù)器所需的資金總額(政府+民企贊助)一共達到546萬元,請參考以下數(shù)據(jù),估計a的整數(shù)值。(參考數(shù)據(jù):172=289,182=324,192=361)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年重慶市巴蜀中學(xué)中考數(shù)學(xué)模擬試卷(6月份)(解析版) 題型:解答題

2012年3月23日至3月25日為期3天、以“云聯(lián)世界感知未來”為主題的2012中國(重慶)國際云計算博覽會(下稱云博會)在渝召開,重慶新市委書記張德江說在未來10年內(nèi)重慶實施“云端計劃”建設(shè)智慧重慶. 市委市政府非常重視“云端服務(wù)器”的建設(shè),幾年前就已經(jīng)著手建設(shè)“云端服務(wù)器”,據(jù)統(tǒng)計,某行政區(qū)在去年前7個月內(nèi),“云端服務(wù)器”的數(shù)量與月份之間的關(guān)系如下表:
月份x(月)1234567
云端服務(wù)器數(shù)量y1(臺)32343638404244
而由于部分地區(qū)陸續(xù)被劃分到其它行政區(qū),該行政區(qū)8至12月份“云端服務(wù)器”數(shù)量y2(臺)與月份x(月)之間存在如圖所示的變化趨勢:
(1)請觀察表格,用所學(xué)過的一次函數(shù)、反比例函數(shù)或二次函數(shù)的有關(guān)知識,直接寫出y1與x之間的函數(shù)關(guān)系式,根據(jù)如圖所示的變化趨勢,直接寫出y2與x之間滿足的一次函數(shù)關(guān)系式;
(2)在2011年內(nèi),市政府每月對每一臺云端服務(wù)器的資金也隨月份發(fā)生改變,若對每一臺服務(wù)器的投入的資金p1(萬元)與月份x滿足函數(shù)關(guān)系式:p1=-0.5x+10.5,(1≤x≤7,且x為整數(shù));8至12月份的資金投入p2(萬元)與月份x滿足函數(shù)關(guān)系式:p2=0.5x+10(8≤x≤12,且x為整數(shù))求去年哪個月政府對該片區(qū)的資金投入最大,并求出這個最大投入;
(3)2012年1月到3月份,政府計劃該區(qū)的云端服務(wù)器每月的數(shù)量比去年12份減少2a%,在去年12月份的基礎(chǔ)上每月每一臺云端服務(wù)器資金投入量將增加0.5a%,某民營企業(yè)為表示對“智慧重慶”的鼎力支持,決定在1月到3月份對每臺云端服務(wù)器分別贊助3萬元.若計劃1月到3月份用于云端服務(wù)器所需的資金總額(政府+民企贊助)一共達到546萬元,請參考以下數(shù)據(jù),估計a的整數(shù)值.(參考數(shù)據(jù):172=289,182=324,QUOTE 872=7569,882=7744,892=7921)192=361)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年重慶巴蜀中學(xué)九年級中考第五次6月考試押題數(shù)學(xué)試卷(解析版) 題型:解答題

2012年3月23日至3月25日為期3天、以“云聯(lián)世界感知未來”為主題的2012中國(重慶)國際云計算博覽會(下稱云博會)在渝召開,重慶新市委書記張德江說在未來10年內(nèi)重慶實施“云端計劃” 建設(shè)智慧重慶。 市委市政府非常重視“云端服務(wù)器”的建設(shè),幾年前就已經(jīng)著手建設(shè)“云端服務(wù)器”,據(jù)統(tǒng)計,某行政區(qū)在去年前7個月內(nèi),“云端服務(wù)器”的數(shù)量與月份之間的關(guān)系如下表:

月份x(月)

1

2

3

4

5

6

7

云端服務(wù)器數(shù)量(臺)

32

34

36

38

40

42

44

而由于部分地區(qū)陸續(xù)被劃分到其它行政區(qū),該行政區(qū)8至12月份“云端服務(wù)器”數(shù)量(臺)與月份x(月)之間存在如圖所示的變化趨勢:

 

 

(1)請觀察表格,用所學(xué)過的一次函數(shù)、反比例函數(shù)或二次函數(shù)的有關(guān)知識,直接寫出與x之間的函數(shù)關(guān)系式,根據(jù)如圖所示的變化趨勢,直接寫出與x之間滿足的一次函數(shù)關(guān)系式;

 (2)在2011年內(nèi),市政府每月對每一臺云端服務(wù)器的資金也隨月份發(fā)生改變,若對每一臺服務(wù)器的投入的資金(萬元)與月份x滿足函數(shù)關(guān)系式: ,(1≤x≤7,且x為整數(shù));8至12月份的資金投入(萬元)與月份x滿足函數(shù)關(guān)系式:(8≤x≤12,且x為整數(shù))求去年哪個月政府對該片區(qū)的資金投入最大,并求出這個最大投入;

(3)2012年1月到3月份,政府計劃該區(qū)的云端服務(wù)器每月的數(shù)量比去年12份減少2a%,在去年12月份的基礎(chǔ)上每月每一臺云端服務(wù)器資金投入量將增加0.5a%,某民營企業(yè)為表示對“智慧重慶”的鼎力支持,決定在1月到3月份對每臺云端服務(wù)器分別贊助3萬元。若計劃1月到3月份用于云端服務(wù)器所需的資金總額(政府+民企贊助)一共達到546萬元,請參考以下數(shù)據(jù),估計a的整數(shù)值。(參考數(shù)據(jù):172=289,182=324,192=361)

 

查看答案和解析>>

同步練習(xí)冊答案